[Hardware][NV] Add support for ModelOpt static scaling checkpoints. (#6112)
This commit is contained in:
parent
1230263e16
commit
efcf946a15
@ -1,6 +1,6 @@
|
||||
### Quantizer Utilities
|
||||
`quantize.py`: NVIDIA Quantization utilities using AMMO, ported from TensorRT-LLM:
|
||||
`https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/quantization/quantize.py`
|
||||
`quantize.py`: NVIDIA Quantization utilities using TensorRT-Model-Optimizer, ported
|
||||
from TensorRT-LLM: [`examples/quantization/quantize.py`](https://github.com/NVIDIA/TensorRT-LLM/blob/main/examples/quantization/quantize.py)
|
||||
|
||||
### Prerequisite
|
||||
|
||||
|
||||
79
tests/models/test_modelopt.py
Normal file
79
tests/models/test_modelopt.py
Normal file
@ -0,0 +1,79 @@
|
||||
# flake8: noqa
|
||||
"""Tests Model Optimizer fp8 models against ground truth generation
|
||||
Note: these tests will only pass on H100
|
||||
"""
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import pytest
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from tests.quantization.utils import is_quant_method_supported
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
||||
|
||||
MAX_MODEL_LEN = 1024
|
||||
|
||||
MODELS = ["nvidia/Llama-3.1-8B-Instruct-FP8"]
|
||||
|
||||
EXPECTED_STRS_MAP = {
|
||||
"nvidia/Llama-3.1-8B-Instruct-FP8": [
|
||||
"You're referring to VLLM, a high-performance Large Language Model (LLM) inference and",
|
||||
'Here are the major milestones in the development of artificial intelligence (AI) from 1950 to ',
|
||||
'The comparison between artificial intelligence (AI) and human intelligence in terms of processing information is a complex and',
|
||||
'A neural network is a complex system modeled after the human brain, consisting of interconnected nodes or "ne',
|
||||
'**The Spark of Imagination**\n\nZeta-5, a sleek and efficient robot, whir',
|
||||
'The COVID-19 pandemic has had a profound impact on global economic structures and business models, leading to',
|
||||
'The Mona Lisa, painted by Leonardo da Vinci in the early 16th century, is one of',
|
||||
'Here are the translations:\n\n**Japanese:** 「早起きは早く獲物をとる'
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
# This test compares against golden strings for exact match since
|
||||
# there is no baseline implementation to compare against
|
||||
# and is unstable w.r.t specifics of the fp8 implementation or
|
||||
# the hardware being run on.
|
||||
# Disabled to prevent it from breaking the build
|
||||
@pytest.mark.skip(
|
||||
reason=
|
||||
"Prevent unstable test based on golden strings from breaking the build.")
|
||||
@pytest.mark.skipif(not is_quant_method_supported("fp8"),
|
||||
reason="fp8 is not supported on this GPU type.")
|
||||
@pytest.mark.parametrize("model_name", MODELS)
|
||||
def test_models(example_prompts, model_name) -> None:
|
||||
model = LLM(
|
||||
model=model_name,
|
||||
max_model_len=MAX_MODEL_LEN,
|
||||
trust_remote_code=True,
|
||||
enforce_eager=True,
|
||||
quantization="modelopt",
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
formatted_prompts = [
|
||||
tokenizer.apply_chat_template([{
|
||||
"role": "user",
|
||||
"content": prompt
|
||||
}],
|
||||
tokenize=False,
|
||||
add_generation_prompt=True)
|
||||
for prompt in example_prompts
|
||||
]
|
||||
params = SamplingParams(max_tokens=20, temperature=0)
|
||||
generations: List[str] = []
|
||||
# Note: these need to be run 1 at a time due to numerical precision,
|
||||
# since the expected strs were generated this way.
|
||||
for prompt in formatted_prompts:
|
||||
outputs = model.generate(prompt, params)
|
||||
generations.append(outputs[0].outputs[0].text)
|
||||
del model
|
||||
|
||||
print(model_name, generations)
|
||||
expected_strs = EXPECTED_STRS_MAP[model_name]
|
||||
for i in range(len(example_prompts)):
|
||||
generated_str = generations[i]
|
||||
expected_str = expected_strs[i]
|
||||
assert expected_str == generated_str, (
|
||||
f"Test{i}:\nExpected: {expected_str!r}\nvLLM: {generated_str!r}")
|
||||
@ -282,9 +282,9 @@ class ModelConfig:
|
||||
supported_quantization = [*QUANTIZATION_METHODS]
|
||||
rocm_supported_quantization = ["awq", "gptq", "fp8"]
|
||||
optimized_quantization_methods = [
|
||||
"fp8", "marlin", "gptq_marlin_24", "gptq_marlin", "awq_marlin",
|
||||
"fbgemm_fp8", "compressed_tensors", "compressed-tensors",
|
||||
"experts_int8"
|
||||
"fp8", "marlin", "modelopt", "gptq_marlin_24", "gptq_marlin",
|
||||
"awq_marlin", "fbgemm_fp8", "compressed_tensors",
|
||||
"compressed-tensors", "experts_int8"
|
||||
]
|
||||
tpu_supported_quantization = ["tpu_int8"]
|
||||
neuron_supported_quantization = ["neuron_quant"]
|
||||
|
||||
@ -26,7 +26,8 @@ WEIGHT_LOADER_V2_SUPPORTED = [
|
||||
"CompressedTensorsLinearMethod", "AWQMarlinLinearMethod",
|
||||
"AWQLinearMethod", "GPTQMarlinLinearMethod", "Fp8LinearMethod",
|
||||
"MarlinLinearMethod", "QQQLinearMethod", "GPTQMarlin24LinearMethod",
|
||||
"TPUInt8LinearMethod", "GPTQLinearMethod", "FBGEMMFp8LinearMethod"
|
||||
"TPUInt8LinearMethod", "GPTQLinearMethod", "FBGEMMFp8LinearMethod",
|
||||
"ModelOptFp8LinearMethod"
|
||||
]
|
||||
|
||||
|
||||
|
||||
@ -22,6 +22,7 @@ from vllm.model_executor.layers.quantization.gptq_marlin import (
|
||||
from vllm.model_executor.layers.quantization.gptq_marlin_24 import (
|
||||
GPTQMarlin24Config)
|
||||
from vllm.model_executor.layers.quantization.marlin import MarlinConfig
|
||||
from vllm.model_executor.layers.quantization.modelopt import ModelOptFp8Config
|
||||
from vllm.model_executor.layers.quantization.neuron_quant import (
|
||||
NeuronQuantConfig)
|
||||
from vllm.model_executor.layers.quantization.qqq import QQQConfig
|
||||
@ -34,6 +35,7 @@ QUANTIZATION_METHODS: Dict[str, Type[QuantizationConfig]] = {
|
||||
"tpu_int8": Int8TpuConfig,
|
||||
"fp8": Fp8Config,
|
||||
"fbgemm_fp8": FBGEMMFp8Config,
|
||||
"modelopt": ModelOptFp8Config,
|
||||
# The order of gptq methods is important for config.py iteration over
|
||||
# override_quantization_method(..)
|
||||
"marlin": MarlinConfig,
|
||||
|
||||
163
vllm/model_executor/layers/quantization/modelopt.py
Normal file
163
vllm/model_executor/layers/quantization/modelopt.py
Normal file
@ -0,0 +1,163 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import torch
|
||||
from torch.nn import Module
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig, QuantizeMethodBase)
|
||||
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
|
||||
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
||||
apply_fp8_linear, cutlass_fp8_supported, requantize_with_max_scale)
|
||||
from vllm.model_executor.parameter import (ModelWeightParameter,
|
||||
PerTensorScaleParameter)
|
||||
|
||||
logger = init_logger(__name__)
|
||||
|
||||
ACTIVATION_SCHEMES = ["static"]
|
||||
|
||||
|
||||
class ModelOptFp8Config(QuantizationConfig):
|
||||
"""Config class for ModelOpt FP8."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
is_checkpoint_fp8_serialized: bool = False,
|
||||
) -> None:
|
||||
self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
|
||||
if is_checkpoint_fp8_serialized:
|
||||
logger.warning("Detected ModelOpt fp8 checkpoint. Please note that"
|
||||
" the format is experimental and could change.")
|
||||
|
||||
@classmethod
|
||||
def get_name(cls) -> str:
|
||||
return "modelopt"
|
||||
|
||||
@classmethod
|
||||
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
||||
return [torch.bfloat16, torch.half]
|
||||
|
||||
@classmethod
|
||||
def get_min_capability(cls) -> int:
|
||||
return 89
|
||||
|
||||
@classmethod
|
||||
def get_config_filenames(cls) -> List[str]:
|
||||
return ["hf_quant_config.json"]
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, config: Dict[str, Any]) -> "ModelOptFp8Config":
|
||||
quant_config = cls.get_from_keys(config, ["quantization"])
|
||||
quant_method = quant_config["quant_algo"]
|
||||
is_checkpoint_fp8_serialized = ("FP8" in quant_method)
|
||||
if not is_checkpoint_fp8_serialized:
|
||||
raise ValueError("ModelOpt currently only supports static FP8"
|
||||
"quantization in vLLM. Please check the "
|
||||
"`hf_quant_config.json` file for your model's "
|
||||
"quant configuration.")
|
||||
return cls(is_checkpoint_fp8_serialized)
|
||||
|
||||
def get_quant_method(self, layer: torch.nn.Module,
|
||||
prefix: str) -> Optional["QuantizeMethodBase"]:
|
||||
from vllm.attention.layer import Attention # Avoid circular import
|
||||
if isinstance(layer, LinearBase):
|
||||
return ModelOptFp8LinearMethod(self)
|
||||
elif isinstance(layer, Attention):
|
||||
return ModelOptFp8KVCacheMethod(self)
|
||||
return None
|
||||
|
||||
def get_scaled_act_names(self) -> List[str]:
|
||||
return []
|
||||
|
||||
|
||||
class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
|
||||
"""
|
||||
Supports loading kv-cache scaling factors from FP8 checkpoints.
|
||||
"""
|
||||
|
||||
def __init__(self, quant_config: ModelOptFp8Config):
|
||||
super().__init__(quant_config)
|
||||
|
||||
|
||||
class ModelOptFp8LinearMethod(LinearMethodBase):
|
||||
"""Linear method for Model Optimizer static quantization.
|
||||
Supports loading FP8 checkpoints with static weight scale and
|
||||
activation scale. Future support might be added for dynamic
|
||||
scales.
|
||||
|
||||
Limitations:
|
||||
1. Only support per-tensor quantization due to torch._scaled_mm support.
|
||||
2. Only support float8_e4m3fn datatype
|
||||
Args: quant_config: The ModelOpt quantization config.
|
||||
"""
|
||||
|
||||
def __init__(self, quant_config: ModelOptFp8Config):
|
||||
self.quant_config = quant_config
|
||||
self.cutlass_fp8_supported = cutlass_fp8_supported()
|
||||
|
||||
def create_weights(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
input_size_per_partition: int,
|
||||
output_partition_sizes: List[int],
|
||||
input_size: int,
|
||||
output_size: int,
|
||||
params_dtype: torch.dtype,
|
||||
**extra_weight_attrs,
|
||||
):
|
||||
del input_size, output_size
|
||||
output_size_per_partition = sum(output_partition_sizes)
|
||||
weight_loader = extra_weight_attrs.get("weight_loader")
|
||||
layer.logical_widths = output_partition_sizes
|
||||
layer.input_size_per_partition = input_size_per_partition
|
||||
layer.output_size_per_partition = output_size_per_partition
|
||||
weight_dtype = (torch.float8_e4m3fn
|
||||
if self.quant_config.is_checkpoint_fp8_serialized else
|
||||
params_dtype)
|
||||
weight = ModelWeightParameter(data=torch.empty(
|
||||
output_size_per_partition,
|
||||
input_size_per_partition,
|
||||
dtype=weight_dtype),
|
||||
input_dim=1,
|
||||
output_dim=0,
|
||||
weight_loader=weight_loader)
|
||||
layer.register_parameter("weight", weight)
|
||||
|
||||
if self.quant_config.is_checkpoint_fp8_serialized:
|
||||
# WEIGHT SCALE
|
||||
weight_scale = PerTensorScaleParameter(data=torch.empty(
|
||||
len(output_partition_sizes), dtype=torch.float32),
|
||||
weight_loader=weight_loader)
|
||||
weight_scale[:] = torch.finfo(torch.float32).min
|
||||
layer.register_parameter("weight_scale", weight_scale)
|
||||
# INPUT SCALE
|
||||
scale = PerTensorScaleParameter(data=torch.empty(
|
||||
len(output_partition_sizes), dtype=torch.float32),
|
||||
weight_loader=weight_loader)
|
||||
|
||||
scale[:] = torch.finfo(torch.float32).min
|
||||
layer.register_parameter("input_scale", scale)
|
||||
|
||||
def process_weights_after_loading(self, layer: Module) -> None:
|
||||
max_w_scale, weight = requantize_with_max_scale(
|
||||
layer.weight, layer.weight_scale, layer.logical_widths)
|
||||
layer.weight = Parameter(weight.t(), requires_grad=False)
|
||||
layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
|
||||
layer.input_scale = Parameter(layer.input_scale.max(),
|
||||
requires_grad=False)
|
||||
|
||||
def apply(
|
||||
self,
|
||||
layer: torch.nn.Module,
|
||||
x: torch.Tensor,
|
||||
bias: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
return apply_fp8_linear(
|
||||
input=x,
|
||||
weight=layer.weight,
|
||||
weight_scale=layer.weight_scale,
|
||||
input_scale=layer.input_scale,
|
||||
bias=bias,
|
||||
cutlass_fp8_supported=self.cutlass_fp8_supported)
|
||||
@ -192,6 +192,13 @@ def get_quant_config(model_config: ModelConfig,
|
||||
|
||||
if model_config.quantization == "bitsandbytes":
|
||||
config["adapter_name_or_path"] = model_name_or_path
|
||||
elif model_config.quantization == "modelopt":
|
||||
if config["producer"]["name"] == "modelopt":
|
||||
return quant_cls.from_config(config)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported quantization config"
|
||||
f" found for {model_config.quantization} in {f}.")
|
||||
|
||||
return quant_cls.from_config(config)
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user