[Model][OpenVINO] Fix regressions from #8346 (#10045)

Signed-off-by: Peter Salas <peter@fixie.ai>
This commit is contained in:
Peter Salas 2024-11-05 20:19:15 -08:00 committed by GitHub
parent 82bfc38d07
commit ffc0f2b47a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 15 additions and 5 deletions

View File

@ -11,4 +11,4 @@ trap remove_docker_container EXIT
remove_docker_container remove_docker_container
# Run the image and launch offline inference # Run the image and launch offline inference
docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/vllm/examples/offline_inference.py docker run --network host --env VLLM_OPENVINO_KVCACHE_SPACE=1 --name openvino-test openvino-test python3 /workspace/examples/offline_inference.py

View File

@ -1,5 +1,5 @@
from dataclasses import dataclass from dataclasses import dataclass
from typing import List, Tuple, Type from typing import Dict, List, Optional, Tuple, Type
import openvino as ov import openvino as ov
import torch import torch
@ -7,6 +7,7 @@ import torch
from vllm.attention.backends.abstract import (AttentionBackend, from vllm.attention.backends.abstract import (AttentionBackend,
AttentionMetadata) AttentionMetadata)
from vllm.attention.backends.utils import CommonAttentionState from vllm.attention.backends.utils import CommonAttentionState
from vllm.multimodal import MultiModalPlaceholderMap
def copy_cache_block(src_tensor: ov.Tensor, dst_tensor: ov.Tensor, def copy_cache_block(src_tensor: ov.Tensor, dst_tensor: ov.Tensor,
@ -128,3 +129,12 @@ class OpenVINOAttentionMetadata:
# Shape: scalar # Shape: scalar
# Type: i32 # Type: i32
max_context_len: torch.Tensor max_context_len: torch.Tensor
# The index maps that relate multi-modal embeddings to the corresponding
# placeholders.
#
# N.B. These aren't really related to attention and don't belong on this
# type -- this is just a temporary solution to make them available to
# `model_executable`.
multi_modal_placeholder_index_maps: Optional[Dict[
str, MultiModalPlaceholderMap.IndexMap]]

View File

@ -21,8 +21,8 @@ from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size, get_tensor_model_parallel_world_size,
split_tensor_along_last_dim, split_tensor_along_last_dim,
tensor_model_parallel_all_gather) tensor_model_parallel_all_gather)
from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, InputContext, from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData,
token_inputs) InputContext, token_inputs)
from vllm.model_executor import SamplingMetadata from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.activation import QuickGELU, SiluAndMul from vllm.model_executor.layers.activation import QuickGELU, SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.layernorm import RMSNorm
@ -915,7 +915,7 @@ def dummy_data_for_molmo(ctx: InputContext, seq_len: int,
if "image_masks" in out: if "image_masks" in out:
dummy_imgdata["image_masks"] = out["image_masks"] dummy_imgdata["image_masks"] = out["image_masks"]
dummy_imgdata["seq_len"] = torch.tensor(seq_len, dtype=torch.long) dummy_imgdata["seq_len"] = torch.tensor(seq_len, dtype=torch.long)
return dummy_seqdata, {"image": dummy_imgdata} return DummyData(dummy_seqdata, {"image": dummy_imgdata})
def pad_images( def pad_images(