from typing import Dict, Set class SamplingParams: def __init__( self, n: int = 1, presence_penalty: float = 0.0, frequency_penalty: float = 0.0, temperature: float = 1.0, top_p: float = 1.0, top_k: int = -1, use_beam_search: bool = False, stop_token_ids: Set[int] = set(), max_tokens: int = 16, logprobs: int = 0, ) -> None: if n < 1: raise ValueError(f"n must be at least 1, got {n}.") if not -2.0 <= presence_penalty <= 2.0: raise ValueError( f"presence_penalty must be in [-2, 2], got {presence_penalty}.") if not -2.0 <= frequency_penalty <= 2.0: raise ValueError( f"frequency_penalty must be in [-2, 2], got {frequency_penalty}.") if temperature < 0.0: raise ValueError( f"temperature must be non-negative, got {temperature}.") if not 0.0 < top_p <= 1.0: raise ValueError(f"top_p must be in (0, 1], got {top_p}.") if top_k < -1 or top_k == 0: raise ValueError(f"top_k must be -1 (disable), or at least 1, " f"got {top_k}.") if max_tokens < 1: raise ValueError( f"max_tokens must be at least 1, got {max_tokens}.") if logprobs < 0: raise ValueError( f"logprobs must be non-negative, got {logprobs}.") if use_beam_search: if n == 1: raise ValueError( "n must be greater than 1 when using beam search.") if temperature > 0.0: raise ValueError( "temperature must be 0 when using beam search.") if top_p < 1.0: raise ValueError( "top_p must be 1 when using beam search.") if top_k != -1: raise ValueError( "top_k must be -1 when using beam search.") elif temperature == 0.0: # Zero temperature means greedy sampling. if n > 1: raise ValueError( "n must be 1 when using greedy sampling.") if top_p < 1.0: raise ValueError( "top_p must be 1 when using greedy sampling.") if top_k != -1: raise ValueError( "top_k must be -1 when using greedy sampling.") self.n = n self.presence_penalty = presence_penalty self.frequency_penalty = frequency_penalty self.temperature = temperature self.top_p = top_p self.top_k = top_k self.use_beam_search = use_beam_search self.stop_token_ids = stop_token_ids self.max_tokens = max_tokens self.logprobs = logprobs def __repr__(self) -> str: return (f"SamplingParams(n={self.n}, " f"presence_penalty={self.presence_penalty}, " f"frequency_penalty={self.frequency_penalty}, " f"temperature={self.temperature}, " f"top_p={self.top_p}, " f"top_k={self.top_k}," f"use_beam_search={self.use_beam_search}, " f"stop_token_ids={self.stop_token_ids}, " f"max_tokens={self.max_tokens}, " f"logprobs={self.logprobs}")