# The CLI entrypoint to vLLM. import argparse import os import signal import sys from typing import List, Optional import uvloop from openai import OpenAI from openai.types.chat import ChatCompletionMessageParam from vllm.engine.arg_utils import EngineArgs from vllm.entrypoints.openai.api_server import run_server from vllm.entrypoints.openai.cli_args import make_arg_parser from vllm.utils import FlexibleArgumentParser def register_signal_handlers(): def signal_handler(sig, frame): sys.exit(0) signal.signal(signal.SIGINT, signal_handler) signal.signal(signal.SIGTSTP, signal_handler) def serve(args: argparse.Namespace) -> None: # The default value of `--model` if args.model != EngineArgs.model: raise ValueError( "With `vllm serve`, you should provide the model as a " "positional argument instead of via the `--model` option.") # EngineArgs expects the model name to be passed as --model. args.model = args.model_tag uvloop.run(run_server(args)) def interactive_cli(args: argparse.Namespace) -> None: register_signal_handlers() base_url = args.url api_key = args.api_key or os.environ.get("OPENAI_API_KEY", "EMPTY") openai_client = OpenAI(api_key=api_key, base_url=base_url) if args.model_name: model_name = args.model_name else: available_models = openai_client.models.list() model_name = available_models.data[0].id print(f"Using model: {model_name}") if args.command == "complete": complete(model_name, openai_client) elif args.command == "chat": chat(args.system_prompt, model_name, openai_client) def complete(model_name: str, client: OpenAI) -> None: print("Please enter prompt to complete:") while True: input_prompt = input("> ") completion = client.completions.create(model=model_name, prompt=input_prompt) output = completion.choices[0].text print(output) def chat(system_prompt: Optional[str], model_name: str, client: OpenAI) -> None: conversation: List[ChatCompletionMessageParam] = [] if system_prompt is not None: conversation.append({"role": "system", "content": system_prompt}) print("Please enter a message for the chat model:") while True: input_message = input("> ") conversation.append({"role": "user", "content": input_message}) chat_completion = client.chat.completions.create(model=model_name, messages=conversation) response_message = chat_completion.choices[0].message output = response_message.content conversation.append(response_message) # type: ignore print(output) def _add_query_options( parser: FlexibleArgumentParser) -> FlexibleArgumentParser: parser.add_argument( "--url", type=str, default="http://localhost:8000/v1", help="url of the running OpenAI-Compatible RESTful API server") parser.add_argument( "--model-name", type=str, default=None, help=("The model name used in prompt completion, default to " "the first model in list models API call.")) parser.add_argument( "--api-key", type=str, default=None, help=( "API key for OpenAI services. If provided, this api key " "will overwrite the api key obtained through environment variables." )) return parser def main(): parser = FlexibleArgumentParser(description="vLLM CLI") subparsers = parser.add_subparsers(required=True) serve_parser = subparsers.add_parser( "serve", help="Start the vLLM OpenAI Compatible API server", usage="vllm serve [options]") serve_parser.add_argument("model_tag", type=str, help="The model tag to serve") serve_parser.add_argument( "--config", type=str, default='', required=False, help="Read CLI options from a config file." "Must be a YAML with the following options:" "https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#command-line-arguments-for-the-server" ) serve_parser = make_arg_parser(serve_parser) serve_parser.set_defaults(dispatch_function=serve) complete_parser = subparsers.add_parser( "complete", help=("Generate text completions based on the given prompt " "via the running API server"), usage="vllm complete [options]") _add_query_options(complete_parser) complete_parser.set_defaults(dispatch_function=interactive_cli, command="complete") chat_parser = subparsers.add_parser( "chat", help="Generate chat completions via the running API server", usage="vllm chat [options]") _add_query_options(chat_parser) chat_parser.add_argument( "--system-prompt", type=str, default=None, help=("The system prompt to be added to the chat template, " "used for models that support system prompts.")) chat_parser.set_defaults(dispatch_function=interactive_cli, command="chat") args = parser.parse_args() # One of the sub commands should be executed. if hasattr(args, "dispatch_function"): args.dispatch_function(args) else: parser.print_help() if __name__ == "__main__": main()