Profiling vLLM ================================= We support tracing vLLM workers using the ``torch.profiler`` module. You can enable tracing by setting the ``VLLM_TORCH_PROFILER_DIR`` environment variable to the directory where you want to save the traces: ``VLLM_TORCH_PROFILER_DIR=/mnt/traces/`` The OpenAI server also needs to be started with the ``VLLM_TORCH_PROFILER_DIR`` environment variable set. When using ``benchmarks/benchmark_serving.py``, you can enable profiling by passing the ``--profile`` flag. .. warning:: Only enable profiling in a development environment. Traces can be visualized using https://ui.perfetto.dev/. .. tip:: Only send a few requests through vLLM when profiling, as the traces can get quite large. Also, no need to untar the traces, they can be viewed directly. Example commands: OpenAI Server: .. code-block:: bash VLLM_TORCH_PROFILER_DIR=/mnt/traces/ python -m vllm.entrypoints.openai.api_server --model meta-llama/Meta-Llama-3-70B benchmark_serving.py: .. code-block:: bash python benchmarks/benchmark_serving.py --backend vllm --model meta-llama/Meta-Llama-3-70B --dataset-name sharegpt --dataset-path sharegpt.json --profile --num-prompts 2