from typing import List, Optional, Tuple, Type import pytest from vllm.multimodal.utils import rescale_image_size from vllm.transformers_utils.tokenizer import patch_padding_side from ....conftest import IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner from ....utils import large_gpu_test from ...utils import check_logprobs_close HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({ "stop_sign": "What's the content of the image?", "cherry_blossom": "What is the season?", }) models = ["THUDM/glm-4v-9b"] target_dtype = "bfloat16" def run_test( hf_runner: Type[HfRunner], vllm_runner: Type[VllmRunner], inputs: List[Tuple[List[str], PromptImageInput]], model: str, *, dtype: str, max_tokens: int, num_logprobs: int, mm_limit: int, tensor_parallel_size: int, distributed_executor_backend: Optional[str] = None, ): # max_model_len should be greater than image_feature_size with vllm_runner(model, max_model_len=2048, max_num_seqs=2, dtype=dtype, limit_mm_per_prompt={"image": mm_limit}, tensor_parallel_size=tensor_parallel_size, distributed_executor_backend=distributed_executor_backend, enforce_eager=True) as vllm_model: stop_token_ids = [151329, 151336, 151338] vllm_outputs_per_image = [ vllm_model.generate_greedy_logprobs(prompts, max_tokens, num_logprobs=num_logprobs, images=images, stop_token_ids=stop_token_ids) for prompts, images in inputs ] with hf_runner(model, dtype=dtype) as hf_model: hf_processor = hf_model.processor patch_padding_side(hf_processor) def processor(*args, text="", images=None, **kwargs): if images is None: return hf_processor(*args, **kwargs) return hf_processor.apply_chat_template( [{ "role": "user", "image": images, "content": text }], add_generation_prompt=True, tokenize=True, return_dict=True, **kwargs, ) hf_model.processor = processor hf_model.model.get_output_embeddings = lambda: \ hf_model.model.transformer.output_layer hf_outputs_per_image = [ hf_model.generate_greedy_logprobs_limit( prompts, max_tokens, num_logprobs=num_logprobs, images=images, ) for prompts, images in inputs ] for hf_outputs, vllm_outputs in zip(hf_outputs_per_image, vllm_outputs_per_image): check_logprobs_close( outputs_0_lst=hf_outputs, outputs_1_lst=vllm_outputs, name_0="hf", name_1="vllm", ) @large_gpu_test(min_gb=48) @pytest.mark.parametrize("model", models) @pytest.mark.parametrize( "size_factors", [ # No image [], # Single-scale [1.0], # Single-scale, batched [1.0, 1.0, 1.0], # Multi-scale [0.25, 0.5, 1.0], ], ) @pytest.mark.parametrize("dtype", [target_dtype]) @pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("num_logprobs", [5]) def test_models(hf_runner, vllm_runner, image_assets, model, size_factors, dtype: str, max_tokens: int, num_logprobs: int) -> None: images = [asset.pil_image for asset in image_assets] inputs_per_image = [( [prompt for _ in size_factors], [rescale_image_size(image, factor) for factor in size_factors], ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] run_test( hf_runner, vllm_runner, inputs_per_image, model, dtype=dtype, max_tokens=max_tokens, num_logprobs=num_logprobs, mm_limit=1, tensor_parallel_size=1, )