Co-authored-by: Dash Desai <1723932+iamontheinet@users.noreply.github.com> Co-authored-by: Aurick Qiao <qiao@aurick.net> Co-authored-by: Aurick Qiao <aurick.qiao@snowflake.com> Co-authored-by: Aurick Qiao <aurickq@users.noreply.github.com> Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
205 lines
8.7 KiB
Python
205 lines
8.7 KiB
Python
# yapf: disable
|
|
# ruff: noqa: E501
|
|
# coding=utf-8
|
|
# Copied from
|
|
# https://huggingface.co/Snowflake/snowflake-arctic-instruct/blob/main/configuration_arctic.py
|
|
""" Arctic model configuration"""
|
|
|
|
from dataclasses import asdict, dataclass
|
|
from typing import Any, Dict
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.utils import logging
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
ARCTIC_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
|
"arctic": "https://huggingface.co/Snowflake/snowflake-arctic-instruct/tree/main/config.json",
|
|
}
|
|
|
|
|
|
@dataclass
|
|
class ArcticLoraConfig:
|
|
lora_r: int = 64
|
|
lora_alpha: float = 16
|
|
shard_base_weights: bool = False
|
|
|
|
|
|
@dataclass
|
|
class ArcticQuantizationConfig:
|
|
q_bits: int = 8
|
|
rounding: str = "nearest"
|
|
mantissa_bits: int = 3
|
|
group_size: int = 128
|
|
|
|
|
|
class ArcticConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`ArcticModel`]. It is used to instantiate an
|
|
Arctic model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of the #TODO(rsamdani): add what model has the default config..
|
|
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 32000):
|
|
Vocabulary size of the Arctic model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`ArcticModel`]
|
|
hidden_size (`int`, *optional*, defaults to 4096):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 14336):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
num_key_value_heads (`int`, *optional*, defaults to 8):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details checkout [this
|
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
|
|
The maximum sequence length that this model might ever be used with. Arctic's sliding window attention
|
|
allows sequence of up to 4096*32 tokens.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
pad_token_id (`int`, *optional*):
|
|
The id of the padding token.
|
|
bos_token_id (`int`, *optional*, defaults to 1):
|
|
The id of the "beginning-of-sequence" token.
|
|
eos_token_id (`int`, *optional*, defaults to 2):
|
|
The id of the "end-of-sequence" token.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether the model's input and output word embeddings should be tied.
|
|
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
|
The base period of the RoPE embeddings.
|
|
sliding_window (`int`, *optional*):
|
|
Sliding window attention window size. If not specified, will default to `4096`.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
num_experts_per_tok (`int`, *optional*, defaults to 2):
|
|
The number of experts to root per-token, can be also interpreted as the `top-p` routing
|
|
parameter
|
|
num_local_experts (`int`, *optional*, defaults to 8):
|
|
Number of experts per Sparse MLP layer.
|
|
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
|
|
The aux loss factor for the total loss.
|
|
|
|
```python
|
|
>>> from transformers import ArcticModel, ArcticConfig
|
|
|
|
>>> # Initializing a Arctic 7B style configuration TODO(rsamdani): verify which model does the default configuration correspond to.
|
|
>>> configuration = ArcticConfig()
|
|
|
|
>>> # Initializing a model from the Arctic 7B style configuration
|
|
>>> model = ArcticModel(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "arctic"
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=32000,
|
|
hidden_size=4096,
|
|
intermediate_size=14336,
|
|
num_hidden_layers=32,
|
|
num_attention_heads=32,
|
|
num_key_value_heads=None,
|
|
hidden_act="silu",
|
|
max_position_embeddings=4096,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-5,
|
|
use_cache=True,
|
|
pad_token_id=None,
|
|
bos_token_id=1,
|
|
eos_token_id=2,
|
|
tie_word_embeddings=False,
|
|
rope_theta=1e6,
|
|
sliding_window=None,
|
|
attention_dropout=0.0,
|
|
num_experts_per_tok=1,
|
|
num_local_experts=8,
|
|
router_aux_loss_coef=0.001,
|
|
moe_layer_frequency=2,
|
|
parallel_attn_mlp_res=False,
|
|
moe_train_capacity_factor=1,
|
|
moe_eval_capacity_factor=1,
|
|
enable_expert_tensor_parallelism=False,
|
|
moe_min_capacity=0,
|
|
moe_token_dropping=True,
|
|
quantization=None,
|
|
**kwargs,
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.sliding_window = sliding_window
|
|
|
|
# for backward compatibility
|
|
if num_key_value_heads is None:
|
|
num_key_value_heads = num_attention_heads
|
|
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.use_cache = use_cache
|
|
self.rope_theta = rope_theta
|
|
self.attention_dropout = attention_dropout
|
|
|
|
self.num_experts_per_tok = num_experts_per_tok
|
|
self.num_local_experts = num_local_experts
|
|
self.router_aux_loss_coef = router_aux_loss_coef
|
|
self.moe_layer_frequency = moe_layer_frequency
|
|
self.moe_train_capacity_factor = moe_train_capacity_factor
|
|
self.moe_eval_capacity_factor = moe_eval_capacity_factor
|
|
self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism
|
|
self.moe_min_capacity = moe_min_capacity
|
|
self.moe_token_dropping = moe_token_dropping
|
|
self.parallel_attn_mlp_res = parallel_attn_mlp_res
|
|
if isinstance(quantization, dict):
|
|
self.quantization = ArcticQuantizationConfig(**quantization)
|
|
else:
|
|
self.quantization = quantization
|
|
|
|
super().__init__(
|
|
pad_token_id=pad_token_id,
|
|
bos_token_id=bos_token_id,
|
|
eos_token_id=eos_token_id,
|
|
tie_word_embeddings=tie_word_embeddings,
|
|
**kwargs,
|
|
)
|
|
|
|
@classmethod
|
|
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "ArcticConfig":
|
|
result = super().from_dict(config_dict, **kwargs)
|
|
config = result[0] if isinstance(result, tuple) else result
|
|
if isinstance(config.quantization, dict):
|
|
config.quantization = ArcticQuantizationConfig(**config.quantization)
|
|
return result
|
|
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
ret = super().to_dict()
|
|
if isinstance(ret["quantization"], ArcticQuantizationConfig):
|
|
ret["quantization"] = asdict(ret["quantization"])
|
|
return ret
|