vllm/vllm/spec_decode/interfaces.py

78 lines
2.2 KiB
Python

from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Dict, List, Optional
import torch
from vllm.sequence import SequenceGroupMetadata
@dataclass
class SpeculativeProposals:
"""Datastructure used to represent proposal tokens from some proposer. It
also tracks how many speculative tokens each sequence has.
"""
# Speculative proposal tokens.
proposal_token_ids: torch.Tensor
# Probabilities of the proposal tokens according to the proposer.
proposal_probs: torch.Tensor
# The valid length of each proposal; can be zero.
proposal_lens: torch.Tensor
def __repr__(self):
return (f"SpeculativeProposals("
f"proposal_token_ids={self.proposal_token_ids}, "
f"proposal_probs={self.proposal_probs.shape}, "
f"proposal_lens={self.proposal_lens})")
@dataclass
class SpeculativeScores:
"""Datastructure used to represent the scores of speculative tokens
according to the scoring model.
"""
# Probabilities of the speculative tokens according to the scoring model.
probs: torch.Tensor
# Token ids sampled from the scoring model. Used for speculative bonus
# tokens and also non-speculative normal decoding.
token_ids: torch.Tensor
def __repr__(self):
return (f"SpeculativeScores("
f"probs={self.probs.shape}, "
f"token_ids={self.token_ids.shape})")
class SpeculativeProposer(ABC):
@abstractmethod
def get_proposals(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
max_proposal_len: int,
) -> SpeculativeProposals:
raise NotImplementedError
class SpeculativeScorer(ABC):
@abstractmethod
def score_proposals(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Optional[Dict[int, int]],
blocks_to_swap_out: Optional[Dict[int, int]],
blocks_to_copy: Optional[Dict[int, List[int]]],
k: int,
proposals: SpeculativeProposals,
) -> SpeculativeScores:
raise NotImplementedError