vllm/vllm/executor/neuron_executor.py

90 lines
3.3 KiB
Python

from typing import Dict, List, Optional, Tuple
from vllm.config import (CacheConfig, DeviceConfig, LoRAConfig, ModelConfig,
ParallelConfig, SchedulerConfig, SpeculativeConfig,
VisionLanguageConfig)
from vllm.executor.executor_base import ExecutorBase
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
logger = init_logger(__name__)
class NeuronExecutor(ExecutorBase):
def __init__(
self,
model_config: ModelConfig,
cache_config: CacheConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
lora_config: Optional[LoRAConfig],
vision_language_config: Optional[VisionLanguageConfig],
speculative_config: Optional[SpeculativeConfig],
) -> None:
self.model_config = model_config
self.cache_config = cache_config
assert lora_config is None, "LoRA is not supported for Neuron backend."
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.device_config = device_config
assert (not speculative_config
), "Speculative decoding not yet supported for Neuron backend."
# Instantiate the worker and load the model to the device.
self._init_worker()
def _init_worker(self):
from vllm.worker.neuron_worker import NeuronWorker
self.driver_worker = NeuronWorker(
self.model_config,
self.parallel_config,
self.scheduler_config,
self.device_config,
self.cache_config,
)
self.driver_worker.init_device()
self.driver_worker.load_model()
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of available KV blocks by invoking the
underlying worker.
"""
return self.driver_worker.determine_num_available_blocks()
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Initialize the KV cache by invoking the underlying worker.
"""
self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
def execute_model(self,
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]]) -> SamplerOutput:
assert (blocks_to_swap_in == {} and blocks_to_swap_out == {}
and blocks_to_copy == {}), (
"Cache operations are not supported for Neuron backend.")
output = self.driver_worker.execute_model(
seq_group_metadata_list=seq_group_metadata_list)
return output
def add_lora(self, lora_request: LoRARequest) -> bool:
return self.driver_worker.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
return self.driver_worker.remove_lora(lora_id)
def list_loras(self) -> List[int]:
return self.driver_worker.list_loras()
def check_health(self) -> None:
# NeuronExecutor will always be healthy as long as
# it's running.
return