vllm/vllm/distributed/communication_op.py

33 lines
1.2 KiB
Python

from typing import Any, Dict, Optional, Union
import torch
import torch.distributed
from .parallel_state import get_tp_group
def tensor_model_parallel_all_reduce(input_: torch.Tensor) -> torch.Tensor:
"""All-reduce the input tensor across model parallel group."""
return get_tp_group().all_reduce(input_)
def tensor_model_parallel_all_gather(input_: torch.Tensor,
dim: int = -1) -> torch.Tensor:
"""All-gather the input tensor across model parallel group."""
return get_tp_group().all_gather(input_, dim)
def tensor_model_parallel_gather(input_: torch.Tensor,
dst: int = 0,
dim: int = -1) -> Optional[torch.Tensor]:
"""Gather the input tensor across model parallel group."""
return get_tp_group().gather(input_, dst, dim)
def broadcast_tensor_dict(tensor_dict: Optional[Dict[Any, Union[torch.Tensor,
Any]]] = None,
src: int = 0):
if not torch.distributed.is_initialized():
return tensor_dict
return get_tp_group().broadcast_tensor_dict(tensor_dict, src)