Refactor the tensor parallelism, quantization, and weight-loading codes. Summary of the new features enabled by this PR: - **All models** are able to be quantized with AWQ and SqueezeLLM, and [soon GPTQ](https://github.com/vllm-project/vllm/pull/1580). - Model loading code became much simpler. - Support model parallelism for all MQA/GQA models when the number of key/value heads is smaller than the tensor parallel size.
140 lines
5.3 KiB
Python
140 lines
5.3 KiB
Python
from typing import Optional, Sequence
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from vllm.model_executor.parallel_utils.parallel_state import (
|
|
get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
)
|
|
from vllm.model_executor.parallel_utils.utils import divide
|
|
from vllm.model_executor.parallel_utils.communication_op import (
|
|
tensor_model_parallel_all_reduce)
|
|
from vllm.model_executor.utils import set_weight_attrs
|
|
|
|
|
|
def pad_vocab_size(vocab_size: int, pad_to: int = 64) -> int:
|
|
"""Pad the vocab size to the given value."""
|
|
return ((vocab_size + pad_to - 1) // pad_to) * pad_to
|
|
|
|
|
|
def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size: int,
|
|
rank: int) -> Sequence[int]:
|
|
index_f = rank * per_partition_vocab_size
|
|
index_l = index_f + per_partition_vocab_size
|
|
return index_f, index_l
|
|
|
|
|
|
def vocab_range_from_global_vocab_size(global_vocab_size: int, rank: int,
|
|
world_size: int) -> Sequence[int]:
|
|
per_partition_vocab_size = divide(global_vocab_size, world_size)
|
|
return vocab_range_from_per_partition_vocab_size(per_partition_vocab_size,
|
|
rank)
|
|
|
|
|
|
class VocabParallelEmbedding(torch.nn.Module):
|
|
"""Embedding parallelized in the vocabulary dimension.
|
|
|
|
Adapted from torch.nn.Embedding, note that we pad the vocabulary size to
|
|
make sure it is divisible by the number of model parallel GPUs.
|
|
|
|
Args:
|
|
num_embeddings: vocabulary size.
|
|
embedding_dim: size of hidden state.
|
|
params_dtype: type of the parameters.
|
|
"""
|
|
|
|
def __init__(self,
|
|
num_embeddings: int,
|
|
embedding_dim: int,
|
|
params_dtype: Optional[torch.dtype] = None):
|
|
super().__init__()
|
|
|
|
# Keep the input dimensions.
|
|
self.num_embeddings = num_embeddings
|
|
self.num_embeddings_padded = pad_vocab_size(num_embeddings)
|
|
self.embedding_dim = embedding_dim
|
|
if params_dtype is None:
|
|
params_dtype = torch.get_default_dtype()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
# Divide the weight matrix along the vocaburaly dimension.
|
|
self.vocab_start_index, self.vocab_end_index = (
|
|
vocab_range_from_global_vocab_size(
|
|
self.num_embeddings_padded, get_tensor_model_parallel_rank(),
|
|
self.tp_size))
|
|
self.num_embeddings_per_partition = (self.vocab_end_index -
|
|
self.vocab_start_index)
|
|
self.weight = Parameter(
|
|
torch.empty(self.num_embeddings_per_partition,
|
|
self.embedding_dim,
|
|
device=torch.cuda.current_device(),
|
|
dtype=params_dtype))
|
|
set_weight_attrs(self.weight, {
|
|
"parallel_dim": 0,
|
|
"weight_loader": self.weight_loader
|
|
})
|
|
|
|
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
|
parallel_dim = param.parallel_dim
|
|
assert loaded_weight.shape[parallel_dim] == self.num_embeddings
|
|
loaded_weight = loaded_weight[self.vocab_start_index:self.
|
|
vocab_end_index]
|
|
param[:loaded_weight.shape[0]].data.copy_(loaded_weight)
|
|
|
|
def forward(self, input_):
|
|
if self.tp_size > 1:
|
|
# Build the mask.
|
|
input_mask = ((input_ < self.vocab_start_index) |
|
|
(input_ >= self.vocab_end_index))
|
|
# Mask the input.
|
|
masked_input = input_.clone() - self.vocab_start_index
|
|
masked_input[input_mask] = 0
|
|
else:
|
|
masked_input = input_
|
|
# Get the embeddings.
|
|
output_parallel = F.embedding(masked_input, self.weight)
|
|
# Mask the output embedding.
|
|
if self.tp_size > 1:
|
|
output_parallel[input_mask, :] = 0.0
|
|
# Reduce across all the model parallel GPUs.
|
|
output = tensor_model_parallel_all_reduce(output_parallel)
|
|
return output
|
|
|
|
|
|
class ParallelLMHead(VocabParallelEmbedding):
|
|
"""Parallelized LM head.
|
|
|
|
Output logits weight matrices used in the Sampler. The weight and bias
|
|
tensors are padded to make sure they are divisible by the number of
|
|
model parallel GPUs.
|
|
|
|
Args:
|
|
num_embeddings: vocabulary size.
|
|
embedding_dim: size of hidden state.
|
|
bias: whether to use bias.
|
|
params_dtype: type of the parameters.
|
|
"""
|
|
|
|
def __init__(self,
|
|
num_embeddings: int,
|
|
embedding_dim: int,
|
|
bias: bool = False,
|
|
params_dtype: Optional[torch.dtype] = None):
|
|
super().__init__(num_embeddings, embedding_dim, params_dtype)
|
|
if bias:
|
|
self.bias = Parameter(
|
|
torch.empty(self.num_embeddings_per_partition,
|
|
device=torch.cuda.current_device(),
|
|
dtype=params_dtype))
|
|
set_weight_attrs(self.bias, {
|
|
"parallel_dim": 0,
|
|
"weight_loader": self.weight_loader
|
|
})
|
|
else:
|
|
self.register_parameter("bias", None)
|
|
|
|
def forward(self, input_):
|
|
del input_
|
|
raise RuntimeError("LMHead's weights should be used in the sampler.")
|