Go to file
2024-10-07 05:47:04 +00:00
.buildkite [CI] Update performance benchmark: upgrade trt-llm to r24.07, and add SGLang (#7412) 2024-10-04 14:01:44 -07:00
.github [ci] Add CODEOWNERS for test directories (#8795) 2024-10-01 00:47:08 +00:00
benchmarks [core] remove beam search from the core (#9105) 2024-10-07 05:47:04 +00:00
cmake [Hardware][PowerPC] Make oneDNN dependency optional for Power (#9039) 2024-10-04 17:24:42 +00:00
csrc [Kernel] Zero point support in fused MarlinMoE kernel + AWQ Fused MoE (#8973) 2024-10-04 12:34:44 -06:00
docs [Model] PP support for embedding models and update docs (#9090) 2024-10-06 16:35:27 +08:00
examples [core] remove beam search from the core (#9105) 2024-10-07 05:47:04 +00:00
tests [core] remove beam search from the core (#9105) 2024-10-07 05:47:04 +00:00
tools [CI/Build] Per file CUDA Archs (improve wheel size and dev build times) (#8845) 2024-10-03 22:55:25 -04:00
vllm [core] remove beam search from the core (#9105) 2024-10-07 05:47:04 +00:00
.clang-format [CI/Build] Enforce style for C++ and CUDA code with clang-format (#4722) 2024-05-22 07:18:41 +00:00
.dockerignore [Bugfix][Intel] Fix XPU Dockerfile Build (#7824) 2024-09-27 23:45:50 -07:00
.gitignore [Build/CI] Set FETCHCONTENT_BASE_DIR to one location for better caching (#8930) 2024-09-29 03:13:01 +00:00
.readthedocs.yaml [Doc] Add missing mock import to docs conf.py (#6834) 2024-07-27 04:47:33 +00:00
.yapfignore [issue templates] add some issue templates (#3412) 2024-03-14 13:16:00 -07:00
CMakeLists.txt [Kernel] Zero point support in fused MarlinMoE kernel + AWQ Fused MoE (#8973) 2024-10-04 12:34:44 -06:00
CODE_OF_CONDUCT.md [Doc] [Misc] Create CODE_OF_CONDUCT.md (#8161) 2024-09-04 16:50:13 -07:00
collect_env.py [misc] fix collect env (#8894) 2024-09-27 00:26:38 -07:00
CONTRIBUTING.md [Misc] Define common requirements (#3841) 2024-04-05 00:39:17 -07:00
Dockerfile [Docs] Add README to the build docker image (#8825) 2024-09-26 11:02:52 -07:00
Dockerfile.cpu [CI/Build] use setuptools-scm to set __version__ (#4738) 2024-09-23 09:44:26 -07:00
Dockerfile.neuron [CI/Build] use setuptools-scm to set __version__ (#4738) 2024-09-23 09:44:26 -07:00
Dockerfile.openvino [CI/Build] use setuptools-scm to set __version__ (#4738) 2024-09-23 09:44:26 -07:00
Dockerfile.ppc64le [CI/Build] use setuptools-scm to set __version__ (#4738) 2024-09-23 09:44:26 -07:00
Dockerfile.rocm [CI/Build][Bugfix][Doc][ROCm] CI fix and doc update after ROCm 6.2 upgrade (#8777) 2024-09-25 22:26:37 +08:00
Dockerfile.tpu [CI/Build] use setuptools-scm to set __version__ (#4738) 2024-09-23 09:44:26 -07:00
Dockerfile.xpu [Bugfix][Intel] Fix XPU Dockerfile Build (#7824) 2024-09-27 23:45:50 -07:00
find_cuda_init.py [Core][VLM] Test registration for OOT multimodal models (#8717) 2024-10-04 10:38:25 -07:00
format.sh [CI/Build] Update Ruff version (#8469) 2024-09-18 11:00:56 +00:00
LICENSE Add Apache-2.0 license (#102) 2023-05-14 18:05:19 -07:00
MANIFEST.in [Misc] Use ray[adag] dependency instead of cuda (#7938) 2024-09-06 09:18:35 -07:00
pyproject.toml [CI/Build] fix setuptools-scm usage (#8771) 2024-09-24 12:38:12 -07:00
python_only_dev.py [misc][installation] build from source without compilation (#8818) 2024-09-26 13:19:04 -07:00
README.md [Doc] Update README.md with Ray summit slides (#9088) 2024-10-05 02:54:45 +00:00
requirements-build.txt [CI/Build] use setuptools-scm to set __version__ (#4738) 2024-09-23 09:44:26 -07:00
requirements-common.txt [Misc][CI/Build] Include cv2 via mistral_common[opencv] (#8951) 2024-09-30 04:28:26 +00:00
requirements-cpu.txt [Hardware][Intel CPU] Update torch 2.4.0 for CPU backend (#6931) 2024-08-02 08:55:58 -07:00
requirements-cuda.txt [Kernel] Build flash-attn from source (#8245) 2024-09-20 23:27:10 -07:00
requirements-dev.txt Seperate dev requirements into lint and test (#5474) 2024-06-13 11:22:41 -07:00
requirements-lint.txt [CI/Build] Update Ruff version (#8469) 2024-09-18 11:00:56 +00:00
requirements-neuron.txt [Hardware][AWS] update neuron to 2.20 (#8676) 2024-09-20 15:19:44 -07:00
requirements-openvino.txt [OpenVINO] Enable GPU support for OpenVINO vLLM backend (#8192) 2024-10-02 17:50:01 -04:00
requirements-rocm.txt [CI/Build][ROCm] Enabling tensorizer tests for ROCm (#7237) 2024-08-27 10:09:13 -07:00
requirements-test.txt [Models] Add remaining model PP support (#7168) 2024-10-04 10:56:58 +08:00
requirements-tpu.txt [TPU] Support single and multi-host TPUs on GKE (#7613) 2024-08-30 00:27:40 -07:00
requirements-xpu.txt [Bugfix][Intel] Fix XPU Dockerfile Build (#7824) 2024-09-27 23:45:50 -07:00
SECURITY.md Create SECURITY.md (#8642) 2024-09-19 12:16:28 -07:00
setup.py [Misc][CI/Build] Include cv2 via mistral_common[opencv] (#8951) 2024-09-30 04:28:26 +00:00
use_existing_torch.py [build] enable existing pytorch (for GH200, aarch64, nightly) (#8713) 2024-09-22 12:47:54 -07:00

vLLM

Easy, fast, and cheap LLM serving for everyone

| Documentation | Blog | Paper | Discord | Twitter/X |

Latest News 🔥

  • [2024/10] Ray Summit 2024 held a special track for vLLM! Please find the opening talk slides from the vLLM team here. Learn more from the talks from other vLLM contributors and users!
  • [2024/09] We hosted the sixth vLLM meetup with NVIDIA! Please find the meetup slides here.
  • [2024/07] We hosted the fifth vLLM meetup with AWS! Please find the meetup slides here.
  • [2024/07] In partnership with Meta, vLLM officially supports Llama 3.1 with FP8 quantization and pipeline parallelism! Please check out our blog post here.
  • [2024/06] We hosted the fourth vLLM meetup with Cloudflare and BentoML! Please find the meetup slides here.
  • [2024/04] We hosted the third vLLM meetup with Roblox! Please find the meetup slides here.
  • [2024/01] We hosted the second vLLM meetup with IBM! Please find the meetup slides here.
  • [2023/10] We hosted the first vLLM meetup with a16z! Please find the meetup slides here.
  • [2023/08] We would like to express our sincere gratitude to Andreessen Horowitz (a16z) for providing a generous grant to support the open-source development and research of vLLM.
  • [2023/06] We officially released vLLM! FastChat-vLLM integration has powered LMSYS Vicuna and Chatbot Arena since mid-April. Check out our blog post.

About

vLLM is a fast and easy-to-use library for LLM inference and serving.

vLLM is fast with:

  • State-of-the-art serving throughput
  • Efficient management of attention key and value memory with PagedAttention
  • Continuous batching of incoming requests
  • Fast model execution with CUDA/HIP graph
  • Quantizations: GPTQ, AWQ, INT4, INT8, and FP8.
  • Optimized CUDA kernels, including integration with FlashAttention and FlashInfer.
  • Speculative decoding
  • Chunked prefill

Performance benchmark: We include a performance benchmark that compares the performance of vLLM against other LLM serving engines (TensorRT-LLM, text-generation-inference and lmdeploy).

vLLM is flexible and easy to use with:

  • Seamless integration with popular Hugging Face models
  • High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more
  • Tensor parallelism and pipeline parallelism support for distributed inference
  • Streaming outputs
  • OpenAI-compatible API server
  • Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron.
  • Prefix caching support
  • Multi-lora support

vLLM seamlessly supports most popular open-source models on HuggingFace, including:

  • Transformer-like LLMs (e.g., Llama)
  • Mixture-of-Expert LLMs (e.g., Mixtral)
  • Embedding Models (e.g. E5-Mistral)
  • Multi-modal LLMs (e.g., LLaVA)

Find the full list of supported models here.

Getting Started

Install vLLM with pip or from source:

pip install vllm

Visit our documentation to learn more.

Contributing

We welcome and value any contributions and collaborations. Please check out CONTRIBUTING.md for how to get involved.

Sponsors

vLLM is a community project. Our compute resources for development and testing are supported by the following organizations. Thank you for your support!

  • a16z
  • AMD
  • Anyscale
  • AWS
  • Crusoe Cloud
  • Databricks
  • DeepInfra
  • Dropbox
  • Google Cloud
  • Lambda Lab
  • NVIDIA
  • Replicate
  • Roblox
  • RunPod
  • Sequoia Capital
  • Skywork AI
  • Trainy
  • UC Berkeley
  • UC San Diego
  • ZhenFund

We also have an official fundraising venue through OpenCollective. We plan to use the fund to support the development, maintenance, and adoption of vLLM.

Citation

If you use vLLM for your research, please cite our paper:

@inproceedings{kwon2023efficient,
  title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
  author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
  booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
  year={2023}
}

Contact Us

  • For technical questions and feature requests, please use Github issues or discussions.
  • For discussing with fellow users, please use Discord.
  • For security disclosures, please use Github's security advisory feature.
  • For collaborations and partnerships, please contact us at vllm-questions AT lists.berkeley.edu.