vllm/vllm/model_executor/models/chameleon.py

1045 lines
40 KiB
Python

from functools import cached_property
from typing import (Any, Dict, Iterable, List, Literal, Optional, Tuple,
TypedDict)
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
from transformers import ChameleonConfig, ChameleonVQVAEConfig
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig, MultiModalConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.inputs import INPUT_REGISTRY, InputContext, LLMInputs
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.image import (cached_get_tokenizer,
repeat_and_pad_image_tokens)
from vllm.sequence import IntermediateTensors, SamplerOutput, SequenceData
from vllm.utils import print_warning_once
from .interfaces import SupportsVision
logger = init_logger(__name__)
# These configs are not part of the model config but the preprocessor
# and processor files, so we hardcode them in the model file for now.
CHAMELEON_CROP_SIZE_HEIGHT = CHAMELEON_CROP_SIZE_WIDTH = 512
CHAMELEON_IMAGE_SEQ_LENGTH = 1024
CHAMELEON_IMAGE_TOKEN_ID = 8711
CHAMELEON_IMAGE_START_TOKEN_ID = 8197
CHAMELEON_IMAGE_END_TOKEN_ID = 8196
CHAMELEON_SEP_TOKEN_ID = 8710
class ChameleonImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
data: torch.Tensor
"""Shape: `(batch_size, num_channels, height, width)`"""
def get_max_chameleon_image_tokens(ctx: InputContext):
return CHAMELEON_IMAGE_SEQ_LENGTH
def dummy_seq_data_for_chameleon(
seq_len: int,
*,
image_token_id: int,
image_feature_size_override: Optional[int] = None,
):
if image_feature_size_override is None:
image_feature_size = CHAMELEON_IMAGE_SEQ_LENGTH
else:
image_feature_size = image_feature_size_override
token_ids = [image_token_id] * image_feature_size
token_ids += [0] * (seq_len - image_feature_size)
return SequenceData(token_ids)
def dummy_image_for_chameleon(
image_width_override: Optional[int] = None,
image_height_override: Optional[int] = None,
):
width = CHAMELEON_CROP_SIZE_WIDTH
height = CHAMELEON_CROP_SIZE_HEIGHT
if image_width_override is not None:
width = image_width_override
if image_height_override is not None:
height = image_height_override
image = Image.new("RGB", (width, height), color=0)
return {"image": image}
def dummy_data_for_chameleon(ctx: InputContext, seq_len: int):
seq_data = dummy_seq_data_for_chameleon(
seq_len,
image_token_id=CHAMELEON_IMAGE_TOKEN_ID,
)
mm_data = dummy_image_for_chameleon()
return seq_data, mm_data
def input_processor_for_chameleon(ctx: InputContext, llm_inputs: LLMInputs):
"""
Processing input prompt to insert required tokens for image placeholder.
See https://github.com/huggingface/transformers/blob/0fdea8607d7e01eb0e38a1ebeb7feee30a22f0cf/src/transformers/models/chameleon/processing_chameleon.py#L58
""" # noqa
multi_modal_data = llm_inputs.get("multi_modal_data")
if multi_modal_data is None or "image" not in multi_modal_data:
return llm_inputs
model_config = ctx.model_config
tokenizer = cached_get_tokenizer(model_config.tokenizer)
new_prompt, new_token_ids = repeat_and_pad_image_tokens(
tokenizer,
llm_inputs.get("prompt"),
llm_inputs["prompt_token_ids"],
image_token_id=CHAMELEON_IMAGE_TOKEN_ID,
repeat_count=CHAMELEON_IMAGE_SEQ_LENGTH,
pad_token_left=CHAMELEON_IMAGE_START_TOKEN_ID,
pad_token_right=CHAMELEON_IMAGE_END_TOKEN_ID,
)
# Appending sep token for chat mode to follow default processor
# behavior
new_prompt += tokenizer.sep_token
new_token_ids += [CHAMELEON_SEP_TOKEN_ID]
# NOTE: Create a defensive copy of the original inputs
return LLMInputs(prompt_token_ids=new_token_ids,
prompt=new_prompt,
multi_modal_data=multi_modal_data)
class ChameleonLayerNorm(nn.LayerNorm):
def __init__(self, hidden_size, *args, **kwargs):
super().__init__(hidden_size, *args, **kwargs)
self.normalized_shape = (hidden_size[-1], )
def forward(self, hidden_states):
hidden_states = F.layer_norm(hidden_states,
self.normalized_shape,
None,
None,
eps=1e-5)
hidden_states = hidden_states * self.weight + self.bias
return hidden_states
# Copied from vllm.model_executor.models.llama.LlamaMLP -> ChameleonMLP
class ChameleonMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
input_size=hidden_size,
output_sizes=[intermediate_size] * 2,
bias=bias,
quant_config=quant_config)
self.down_proj = RowParallelLinear(input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
# Modified from vllm.model_executor.models.llama.LlamaAttention -> ChameleonAttention #noqa
class ChameleonAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 4096,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = False,
cache_config: Optional[CacheConfig] = None,
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
)
self.o_proj = RowParallelLinear(
input_size=self.total_num_heads * self.head_dim,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
)
self.q_norm = ChameleonLayerNorm((self.num_heads, self.head_dim))
self.k_norm = ChameleonLayerNorm((self.num_kv_heads, self.head_dim))
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config)
def _apply_qk_norm(self, q: torch.Tensor,
k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape for layernorm
q = q.reshape(-1, self.num_heads, self.head_dim)
k = k.reshape(-1, self.num_kv_heads, self.head_dim)
q = self.q_norm(q)
k = self.k_norm(k)
q = q.view(*q.shape[:-2], -1)
k = k.view(*k.shape[:-2], -1)
return q, k
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self._apply_qk_norm(q, k)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.o_proj(attn_output)
return output
class ChameleonDecoderLayer(nn.Module):
def __init__(
self,
config: ChameleonConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling is not None and getattr(
config, "original_max_position_embeddings", None):
rope_scaling["original_max_position_embeddings"] = (
config.original_max_position_embeddings)
max_position_embeddings = getattr(config, "max_position_embeddings",
4096)
self.self_attn = ChameleonAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=getattr(config, "num_key_value_heads",
config.num_attention_heads),
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=False,
cache_config=cache_config,
)
self.mlp = ChameleonMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
bias=getattr(config, "mlp_bias", False),
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
class ChameleonSwinDecoderLayer(nn.Module):
def __init__(
self,
config: ChameleonConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling is not None and getattr(
config, "original_max_position_embeddings", None):
rope_scaling["original_max_position_embeddings"] = (
config.original_max_position_embeddings)
max_position_embeddings = getattr(config, "max_position_embeddings",
4096)
self.self_attn = ChameleonAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=getattr(config, "num_key_value_heads",
config.num_attention_heads),
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=False,
cache_config=cache_config,
)
self.mlp = ChameleonMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
bias=getattr(config, "mlp_bias", False),
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
residual = hidden_states
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
hidden_states = self.input_layernorm(hidden_states)
hidden_states = hidden_states + residual
# Fully Connected
residual = hidden_states
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
return hidden_states, residual
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEVectorQuantizer #noqa
class ChameleonVQVAEVectorQuantizer(nn.Module):
def __init__(self, config: ChameleonVQVAEConfig):
super().__init__()
self.num_embeddings = config.num_embeddings
self.embedding_dim = config.embed_dim
self.beta = getattr(config, "beta", 0.25)
self.embedding = nn.Embedding(self.num_embeddings, self.embedding_dim)
self.re_embed = self.num_embeddings
def forward(self, hidden_state: torch.Tensor):
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous()
hidden_state_flattened = hidden_state.view(-1, self.embedding_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
distances = (
torch.sum(hidden_state_flattened**2, dim=1, keepdim=True) +
torch.sum(self.embedding.weight**2, dim=1) -
2 * torch.einsum("bd,dn->bn", hidden_state_flattened,
self.embedding.weight.transpose(0, 1)))
min_encoding_indices = torch.argmin(distances, dim=1)
hidden_state_quant = self.embedding(min_encoding_indices).view(
hidden_state.shape)
# compute loss for embedding
loss = torch.mean((hidden_state_quant.detach() - hidden_state)**
2) + self.beta * torch.mean(
(hidden_state_quant - hidden_state.detach())**2)
# preserve gradients
hidden_state_quant = hidden_state + (hidden_state_quant -
hidden_state).detach()
# reshape back to match original input shape
hidden_state_quant = hidden_state_quant.permute(0, 3, 1,
2).contiguous()
return hidden_state_quant, loss, min_encoding_indices
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoderConvDownsample #noqa
class ChameleonVQVAEEncoderConvDownsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0)
def forward(self, hidden_states: torch.Tensor):
# no asymmetric padding in torch conv, must do it ourselves
hidden_states = F.pad(hidden_states,
pad=(0, 1, 0, 1),
mode="constant",
value=0)
hidden_states = self.conv(hidden_states)
return hidden_states
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoderResnetBlock #noqa
class ChameleonVQVAEEncoderResnetBlock(nn.Module):
def __init__(
self,
config: ChameleonVQVAEConfig,
in_channels: int,
out_channels=None,
conv_shortcut=False,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None \
else out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = torch.nn.GroupNorm(num_groups=32,
num_channels=in_channels,
eps=1e-6,
affine=True)
self.conv1 = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
self.norm2 = torch.nn.GroupNorm(num_groups=32,
num_channels=out_channels,
eps=1e-6,
affine=True)
self.dropout = torch.nn.Dropout(config.dropout)
self.conv2 = torch.nn.Conv2d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, hidden_states: torch.Tensor):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states *= torch.sigmoid(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
residual = self.conv_shortcut(residual)
else:
residual = self.nin_shortcut(residual)
return residual + hidden_states
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoderAttnBlock #noqa
class ChameleonVQVAEEncoderAttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(num_groups=32,
num_channels=in_channels,
eps=1e-6,
affine=True)
self.q = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv2d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, hidden_states: torch.Tensor):
residual = hidden_states
hidden_states = self.norm(hidden_states)
query_states = self.q(hidden_states)
key_states = self.k(hidden_states)
value_states = self.v(hidden_states)
# compute attention
batch_size, channels, height, width = query_states.shape
query_states = query_states.reshape(batch_size, channels,
height * width).permute(0, 2, 1)
key_states = key_states.reshape(batch_size, channels, height * width)
attn_weights = torch.bmm(query_states, key_states)
attn_weights = attn_weights * (int(channels)**(-0.5))
attn_weights = F.softmax(attn_weights, dim=2)
# attend to values
value_states = value_states.reshape(batch_size, channels,
height * width)
attn_weights = attn_weights.permute(0, 2, 1)
attn_output = torch.bmm(value_states,
attn_weights).reshape(batch_size, channels,
height, width)
attn_output = self.proj_out(attn_output)
return residual + attn_output
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAEEncoder #noqa
class ChameleonVQVAEEncoder(nn.Module):
def __init__(self, config: ChameleonVQVAEConfig):
super().__init__()
self.num_resolutions = len(config.channel_multiplier)
self.num_res_blocks = config.num_res_blocks
base_channels = config.base_channels
resolution = config.resolution
in_channels = config.in_channels
double_latent = config.double_latent
latent_channels = config.latent_channels
channel_multiplier = config.channel_multiplier
self.conv_in = torch.nn.Conv2d(in_channels,
base_channels,
kernel_size=3,
stride=1,
padding=1)
curr_res = resolution
in_channel_multiplier = (1, ) + tuple(channel_multiplier)
self.in_channel_multiplier = in_channel_multiplier
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = base_channels * in_channel_multiplier[i_level]
block_out = base_channels * channel_multiplier[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ChameleonVQVAEEncoderResnetBlock(
config=config,
in_channels=block_in,
out_channels=block_out,
))
block_in = block_out
if (config.attn_resolutions is not None
and curr_res in config.attn_resolutions
and config.attn_type == "vanilla"):
attn.append(ChameleonVQVAEEncoderAttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = ChameleonVQVAEEncoderConvDownsample(block_in)
curr_res = curr_res // 2
self.down.append(down)
self.mid = nn.Module()
self.mid.block_1 = ChameleonVQVAEEncoderResnetBlock(
config=config,
in_channels=block_in,
out_channels=block_in,
)
self.mid.attn_1 = ChameleonVQVAEEncoderAttnBlock(
block_in) if config.attn_type == "vanilla" else nn.Identity()
self.mid.block_2 = ChameleonVQVAEEncoderResnetBlock(
config=config,
in_channels=block_in,
out_channels=block_in,
)
self.norm_out = torch.nn.GroupNorm(num_groups=32,
num_channels=block_in,
eps=1e-6,
affine=True)
self.conv_out = torch.nn.Conv2d(
block_in,
2 * latent_channels if double_latent else latent_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, pixel_values: torch.Tensor):
# downsampling
hidden_states = [self.conv_in(pixel_values)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
hidden_state = self.down[i_level].block[i_block](
hidden_states[-1], )
if len(self.down[i_level].attn) > 0:
hidden_state = self.down[i_level].attn[i_block](
hidden_state)
hidden_states.append(hidden_state)
if i_level != self.num_resolutions - 1:
hidden_states.append(self.down[i_level].downsample(
hidden_states[-1]))
# middle
last_hidden_state = hidden_states[-1]
last_hidden_state = self.mid.block_1(last_hidden_state)
last_hidden_state = self.mid.attn_1(last_hidden_state)
last_hidden_state = self.mid.block_2(last_hidden_state)
# end
last_hidden_state = self.norm_out(last_hidden_state)
last_hidden_state *= torch.sigmoid(last_hidden_state)
last_hidden_state = self.conv_out(last_hidden_state)
return last_hidden_state
# Adapted from transformers.models.chameleon.modeling_chameleon.ChameleonVQVAE #noqa
class ChameleonVQVAE(nn.Module):
def __init__(self, config: ChameleonVQVAEConfig):
super().__init__()
self.encoder = ChameleonVQVAEEncoder(config)
self.quantize = ChameleonVQVAEVectorQuantizer(config)
self.quant_conv = torch.nn.Conv2d(config.latent_channels,
config.embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(config.embed_dim,
config.latent_channels, 1)
self.eval() # Chameleon's VQ model is frozen
def encode(
self, pixel_values: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
hidden_states = self.encoder(pixel_values)
hidden_states = self.quant_conv(hidden_states)
quant, emb_loss, indices = self.quantize(hidden_states)
return quant, emb_loss, indices
# Copied from transformers.models.chameleon.modeling_chameleon.ChameleonImageVocabularyMapping #noqa
class ChameleonImageVocabularyMapping:
"""
A class for mapping discrete image tokens from VQGAN to BPE tokens.
"""
def __init__(self, vocab_map: Dict[str, int]):
self.vocab_map = vocab_map
self.image_token_id = vocab_map.get("<image>")
@cached_property
def val2name(self):
return {v: k for k, v in self.vocab_map.items()}
@cached_property
def image_tokens(self):
return sorted([
val for name, val in self.vocab_map.items()
if name.startswith("IMGIMG")
])
@cached_property
def bpe2img(self):
img_tkn_chr_mapping = {chr(ord("A") + i): str(i) for i in range(10)}
def remap(old_name: str) -> str:
return "".join(
img_tkn_chr_mapping.get(c, c)
for c in old_name[len("IMGIMG"):-1])
return {
tok: int(remap(self.val2name[tok]))
for tok in self.image_tokens
}
@cached_property
def img2bpe(self):
return {v: k for k, v in self.bpe2img.items()}
@cached_property
def bpe2img_search_tensors(self):
return torch.tensor(sorted(self.bpe2img.keys())), torch.tensor(
sorted(self.bpe2img.values()))
@cached_property
def img2bpe_mapping_tensor(self):
mapping = torch.zeros(max(self.img2bpe.keys()) + 1, dtype=torch.int)
for k, v in self.img2bpe.items():
mapping[k] = v
return mapping
def convert_img2bpe(self, img_batch: torch.Tensor) -> torch.Tensor:
device = img_batch.device
img_tokens = self.img2bpe_mapping_tensor[img_batch.to("cpu")]
return img_tokens.to(device)
class ChameleonModel(nn.Module):
def __init__(
self,
config: ChameleonConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size,
config.hidden_size,
)
self.vocabulary_mapping = ChameleonImageVocabularyMapping(
config.vocabulary_map)
decoder_layer = ChameleonDecoderLayer if not self.config.swin_norm \
else ChameleonSwinDecoderLayer
self.layers = nn.ModuleList([
decoder_layer(config=config,
cache_config=cache_config,
quant_config=quant_config)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.vqmodel = ChameleonVQVAE(config.vq_config)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def get_image_tokens(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
Tokenizes images into discrete tokens with VQGAN module. Converts
obtained image tokens into BPE tokens and wraps with "boi" and "eoi"
special tokens.
"""
batch_size = pixel_values.shape[0]
_, _, image_toks = self.vqmodel.encode(pixel_values)
bpe_toks = self.vocabulary_mapping.convert_img2bpe(image_toks)
bpe_toks = bpe_toks.view(batch_size, -1)
return bpe_toks
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
attn_metadata,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
@MULTIMODAL_REGISTRY.register_image_input_mapper()
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_chameleon_image_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_chameleon)
@INPUT_REGISTRY.register_input_processor(input_processor_for_chameleon)
class ChameleonForConditionalGeneration(nn.Module, SupportsVision):
def __init__(
self,
config: ChameleonConfig,
multimodal_config: MultiModalConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
self.multimodal_config = multimodal_config
self.model = ChameleonModel(config, cache_config, quant_config)
self.unpadded_vocab_size = config.vocab_size
self.lm_head = ParallelLMHead(
self.unpadded_vocab_size,
config.hidden_size,
)
if config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
logit_scale = getattr(config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
config.vocab_size, logit_scale)
self.sampler = Sampler()
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
expected_dims = (3, CHAMELEON_CROP_SIZE_HEIGHT,
CHAMELEON_CROP_SIZE_WIDTH)
actual_dims = tuple(data.shape[1:])
if actual_dims != expected_dims:
expected_expr = ("batch_size", *map(str, expected_dims))
raise ValueError(
f"The expected shape of pixel values is {expected_expr}. "
f"You supplied {tuple(data.shape)}.")
return data
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[ChameleonImagePixelInputs]:
pixel_values = kwargs.pop("pixel_values", None)
if pixel_values is None:
return None
if not isinstance(pixel_values, torch.Tensor):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
return ChameleonImagePixelInputs(
type="pixel_values",
data=self._validate_pixel_values(pixel_values),
)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs,
) -> torch.Tensor:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is not None:
assert self.model.vqmodel is not None
image_tokens = self.model.get_image_tokens(image_input["data"].to(
self.config.torch_dtype))
image_token_id = self.model.vocabulary_mapping.image_token_id
special_image_mask = input_ids == image_token_id
image_tokens = image_tokens.to(input_ids.device, input_ids.dtype)
input_ids = input_ids.masked_scatter(special_image_mask,
image_tokens)
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
# Disallow image tokens which does not include special
# begin-image and end-image tokens
image_tokens = self.model.vocabulary_mapping.image_tokens
logits[:, image_tokens] = torch.finfo(logits.dtype).min
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
use_default_weight_loading = False
if "vqmodel" in name:
if self.model.vqmodel is not None:
# We only do sharding for language model and
# not vqvae for now.
use_default_weight_loading = True
else:
for (param_name, weight_name,
shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
if name.endswith("kv_scale"):
remapped_kv_scale_name = name.replace(
".kv_scale", ".attn.kv_scale")
if remapped_kv_scale_name not in params_dict:
print_warning_once(
"Found kv scale in the checkpoint (e.g. "
f"{name}), but not found the expected name in "
f"the model (e.g. {remapped_kv_scale_name}). "
"kv-scale is not loaded.")
continue
else:
name = remapped_kv_scale_name
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
if use_default_weight_loading and name in params_dict:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)