vllm/vllm/outputs.py

319 lines
12 KiB
Python

import time
from dataclasses import dataclass
from typing import List, Optional
from typing import Sequence as GenericSequence
from typing import Union
from vllm.lora.request import LoRARequest
from vllm.sampling_params import RequestOutputKind
from vllm.sequence import (PromptLogprobs, RequestMetrics, SampleLogprobs,
SequenceGroup, SequenceStatus)
@dataclass
class CompletionOutput:
"""The output data of one completion output of a request.
Args:
index: The index of the output in the request.
text: The generated output text.
token_ids: The token IDs of the generated output text.
cumulative_logprob: The cumulative log probability of the generated
output text.
logprobs: The log probabilities of the top probability words at each
position if the logprobs are requested.
finish_reason: The reason why the sequence is finished.
stop_reason: The stop string or token id that caused the completion
to stop, None if the completion finished for some other reason
including encountering the EOS token.
lora_request: The LoRA request that was used to generate the output.
"""
index: int
text: str
token_ids: GenericSequence[int]
cumulative_logprob: Optional[float]
logprobs: Optional[SampleLogprobs]
finish_reason: Optional[str] = None
stop_reason: Union[int, str, None] = None
lora_request: Optional[LoRARequest] = None
def finished(self) -> bool:
return self.finish_reason is not None
def __repr__(self) -> str:
return (f"CompletionOutput(index={self.index}, "
f"text={self.text!r}, "
f"token_ids={self.token_ids}, "
f"cumulative_logprob={self.cumulative_logprob}, "
f"logprobs={self.logprobs}, "
f"finish_reason={self.finish_reason}, "
f"stop_reason={self.stop_reason})")
@dataclass
class EmbeddingOutput:
"""The output data of one completion output of a request.
Args:
embedding: The embedding vector, which is a list of floats. The
length of vector depends on the model as listed in the embedding guide.
"""
embedding: List[float]
def __repr__(self) -> str:
return (f"EmbeddingOutput("
f"embedding={len(self.embedding)})")
class RequestOutput:
"""The output data of a completion request to the LLM.
Args:
request_id: The unique ID of the request.
prompt: The prompt string of the request.
For encoder/decoder models, this is the
decoder input prompt.
prompt_token_ids: The token IDs of the prompt.
For encoder/decoder models, this is the
decoder input prompt token ids.
prompt_logprobs: The log probabilities to return per prompt token.
outputs: The output sequences of the request.
finished: Whether the whole request is finished.
metrics: Metrics associated with the request.
lora_request: The LoRA request that was used to generate the output.
encoder_prompt: The encoder prompt string of the request;
None if decoder-only
encoder_prompt_token_ids: The token IDs of the encoder prompt;
None if decoder-only
"""
def __init__(
self,
request_id: str,
prompt: Optional[str],
prompt_token_ids: Optional[List[int]],
prompt_logprobs: Optional[PromptLogprobs],
outputs: List[CompletionOutput],
finished: bool,
metrics: Optional[RequestMetrics] = None,
lora_request: Optional[LoRARequest] = None,
encoder_prompt: Optional[str] = None,
encoder_prompt_token_ids: Optional[List[int]] = None,
) -> None:
self.request_id = request_id
self.prompt = prompt
self.prompt_token_ids = prompt_token_ids
self.prompt_logprobs = prompt_logprobs
self.outputs = outputs
self.finished = finished
self.metrics = metrics
self.lora_request = lora_request
self.encoder_prompt = encoder_prompt
self.encoder_prompt_token_ids = encoder_prompt_token_ids
@classmethod
def from_seq_group(cls, seq_group: SequenceGroup,
use_cache: bool) -> Optional["RequestOutput"]:
sampling_params = seq_group.sampling_params
if sampling_params is None:
raise ValueError(
"Sampling parameters are missing for a CompletionRequest.")
finished = seq_group.is_finished()
if sampling_params.output_kind == RequestOutputKind.FINAL_ONLY and (
not finished):
return None
# Init cache (if needed)
if use_cache and seq_group.cached_request_output is None:
seq_group.cached_request_output = RequestOutput( # type: ignore
request_id="",
prompt=None,
prompt_token_ids=[],
prompt_logprobs=None,
outputs=[],
finished=False)
seqs = seq_group.get_seqs()
if len(seqs) == 1:
top_n_seqs = seqs
else:
# Get the top-n sequences.
n = sampling_params._real_n or sampling_params.n
sorting_key = lambda seq: seq.get_cumulative_logprob()
sorted_seqs = sorted(seqs, key=sorting_key, reverse=True)
top_n_seqs = sorted_seqs[:n]
# Create the outputs.
# NOTE: We need omit logprobs here explicitly because the sequence
# always has the logprobs of the sampled tokens even if the
# logprobs are not requested.
include_logprobs = sampling_params.logprobs is not None
text_buffer_length = sampling_params.output_text_buffer_length
delta = sampling_params.output_kind == RequestOutputKind.DELTA
outputs = []
include_prompt = True
for i, seq in enumerate(top_n_seqs):
output_text = seq.get_output_text_to_return(
text_buffer_length, delta)
output_token_ids = seq.get_output_token_ids_to_return(delta)
num_output_tokens = 1 if isinstance(output_token_ids,
int) else len(output_token_ids)
output_logprobs = seq.output_logprobs if include_logprobs else None
if delta:
# Slice logprobs delta if applicable
if output_logprobs:
output_logprobs = output_logprobs[-num_output_tokens:]
# Don't include prompt if this is after the first output
# containing decode token ids
if include_prompt and seq.get_output_len() > num_output_tokens:
include_prompt = False
if use_cache:
# Get cached output object
cached_outputs = seq_group.cached_request_output.outputs # type: ignore
if i >= len(cached_outputs):
cached_outputs.append(
CompletionOutput(index=i,
text="",
token_ids=[],
cumulative_logprob=None,
logprobs=None,
finish_reason=None,
stop_reason=None))
output = cached_outputs[i]
# Init cached output object
assert output.index == i
output.text = output_text
if isinstance(output_token_ids, int):
output.token_ids.clear()
output.token_ids.append(output_token_ids)
else:
output.token_ids = output_token_ids
output.cumulative_logprob = seq.get_cumulative_logprob() \
if include_logprobs else None
output.logprobs = output_logprobs
output.finish_reason = SequenceStatus.get_finished_reason(
seq.status)
output.stop_reason = seq.stop_reason
else:
output = CompletionOutput(
seqs.index(seq), output_text, [output_token_ids]
if isinstance(output_token_ids, int) else output_token_ids,
seq.get_cumulative_logprob() if include_logprobs else None,
output_logprobs,
SequenceStatus.get_finished_reason(seq.status),
seq.stop_reason)
outputs.append(output)
# Every sequence in the sequence group should have the same prompt.
if include_prompt:
prompt = seq_group.prompt
prompt_token_ids = seq_group.prompt_token_ids
encoder_prompt = seq_group.encoder_prompt
encoder_prompt_token_ids = seq_group.encoder_prompt_token_ids
prompt_logprobs = seq_group.prompt_logprobs
else:
prompt = None
prompt_token_ids = None
encoder_prompt = None
encoder_prompt_token_ids = None
prompt_logprobs = None
finished_time = time.time() if finished else None
seq_group.set_finished_time(finished_time)
init_args = (seq_group.request_id, prompt, prompt_token_ids,
prompt_logprobs, outputs, finished, seq_group.metrics,
seq_group.lora_request, encoder_prompt,
encoder_prompt_token_ids)
if use_cache:
request_output = seq_group.cached_request_output
request_output.__init__(*init_args) # type: ignore
else:
request_output = cls(*init_args)
return request_output
def __repr__(self) -> str:
return (f"RequestOutput(request_id={self.request_id}, "
f"prompt={self.prompt!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"encoder_prompt={self.encoder_prompt!r}, "
f"encoder_prompt_token_ids={self.encoder_prompt_token_ids}, "
f"prompt_logprobs={self.prompt_logprobs}, "
f"outputs={self.outputs}, "
f"finished={self.finished}, "
f"metrics={self.metrics}, "
f"lora_request={self.lora_request})")
class EmbeddingRequestOutput:
"""
The output data of an embedding request to the LLM.
Args:
request_id (str): A unique identifier for the embedding request.
outputs (EmbeddingOutput): The embedding results for the given input.
prompt_token_ids (List[int]): A list of token IDs used in the prompt.
finished (bool): A flag indicating whether the embedding is completed.
"""
def __init__(self, request_id: str, outputs: "EmbeddingOutput",
prompt_token_ids: List[int], finished: bool):
self.request_id = request_id
self.prompt_token_ids = prompt_token_ids
self.finished = finished
self.outputs = outputs
@classmethod
def from_seq_group(cls,
seq_group: 'SequenceGroup') -> "EmbeddingRequestOutput":
if seq_group.embeddings is None:
raise ValueError(
"Embeddings are missing in seq_group for EmbeddingRequest.")
output = EmbeddingOutput(seq_group.embeddings)
prompt_token_ids = seq_group.prompt_token_ids
finished = seq_group.is_finished()
return cls(seq_group.request_id, output, prompt_token_ids, finished)
def __repr__(self):
"""
Returns a string representation of an EmbeddingRequestOutput instance.
The representation includes the request_id and the number of outputs,
providing a quick overview of the embedding request's results.
Returns:
str: A string representation of the EmbeddingRequestOutput instance.
"""
return (f"EmbeddingRequestOutput(request_id='{self.request_id}', "
f"outputs={repr(self.outputs)}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"finished={self.finished})")
class RequestOutputFactory:
@staticmethod
def create(seq_group: SequenceGroup, use_cache: bool = False):
# Determine the type based on a condition, for example:
if hasattr(seq_group,
'embeddings') and seq_group.embeddings is not None:
return EmbeddingRequestOutput.from_seq_group(seq_group)
else:
return RequestOutput.from_seq_group(seq_group, use_cache)