319 lines
12 KiB
Python
319 lines
12 KiB
Python
import time
|
|
from dataclasses import dataclass
|
|
from typing import List, Optional
|
|
from typing import Sequence as GenericSequence
|
|
from typing import Union
|
|
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.sampling_params import RequestOutputKind
|
|
from vllm.sequence import (PromptLogprobs, RequestMetrics, SampleLogprobs,
|
|
SequenceGroup, SequenceStatus)
|
|
|
|
|
|
@dataclass
|
|
class CompletionOutput:
|
|
"""The output data of one completion output of a request.
|
|
|
|
Args:
|
|
index: The index of the output in the request.
|
|
text: The generated output text.
|
|
token_ids: The token IDs of the generated output text.
|
|
cumulative_logprob: The cumulative log probability of the generated
|
|
output text.
|
|
logprobs: The log probabilities of the top probability words at each
|
|
position if the logprobs are requested.
|
|
finish_reason: The reason why the sequence is finished.
|
|
stop_reason: The stop string or token id that caused the completion
|
|
to stop, None if the completion finished for some other reason
|
|
including encountering the EOS token.
|
|
lora_request: The LoRA request that was used to generate the output.
|
|
"""
|
|
|
|
index: int
|
|
text: str
|
|
token_ids: GenericSequence[int]
|
|
cumulative_logprob: Optional[float]
|
|
logprobs: Optional[SampleLogprobs]
|
|
finish_reason: Optional[str] = None
|
|
stop_reason: Union[int, str, None] = None
|
|
lora_request: Optional[LoRARequest] = None
|
|
|
|
def finished(self) -> bool:
|
|
return self.finish_reason is not None
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"CompletionOutput(index={self.index}, "
|
|
f"text={self.text!r}, "
|
|
f"token_ids={self.token_ids}, "
|
|
f"cumulative_logprob={self.cumulative_logprob}, "
|
|
f"logprobs={self.logprobs}, "
|
|
f"finish_reason={self.finish_reason}, "
|
|
f"stop_reason={self.stop_reason})")
|
|
|
|
|
|
@dataclass
|
|
class EmbeddingOutput:
|
|
"""The output data of one completion output of a request.
|
|
|
|
Args:
|
|
embedding: The embedding vector, which is a list of floats. The
|
|
length of vector depends on the model as listed in the embedding guide.
|
|
"""
|
|
|
|
embedding: List[float]
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"EmbeddingOutput("
|
|
f"embedding={len(self.embedding)})")
|
|
|
|
|
|
class RequestOutput:
|
|
"""The output data of a completion request to the LLM.
|
|
|
|
Args:
|
|
request_id: The unique ID of the request.
|
|
prompt: The prompt string of the request.
|
|
For encoder/decoder models, this is the
|
|
decoder input prompt.
|
|
prompt_token_ids: The token IDs of the prompt.
|
|
For encoder/decoder models, this is the
|
|
decoder input prompt token ids.
|
|
prompt_logprobs: The log probabilities to return per prompt token.
|
|
outputs: The output sequences of the request.
|
|
finished: Whether the whole request is finished.
|
|
metrics: Metrics associated with the request.
|
|
lora_request: The LoRA request that was used to generate the output.
|
|
encoder_prompt: The encoder prompt string of the request;
|
|
None if decoder-only
|
|
encoder_prompt_token_ids: The token IDs of the encoder prompt;
|
|
None if decoder-only
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
request_id: str,
|
|
prompt: Optional[str],
|
|
prompt_token_ids: Optional[List[int]],
|
|
prompt_logprobs: Optional[PromptLogprobs],
|
|
outputs: List[CompletionOutput],
|
|
finished: bool,
|
|
metrics: Optional[RequestMetrics] = None,
|
|
lora_request: Optional[LoRARequest] = None,
|
|
encoder_prompt: Optional[str] = None,
|
|
encoder_prompt_token_ids: Optional[List[int]] = None,
|
|
) -> None:
|
|
self.request_id = request_id
|
|
self.prompt = prompt
|
|
self.prompt_token_ids = prompt_token_ids
|
|
self.prompt_logprobs = prompt_logprobs
|
|
self.outputs = outputs
|
|
self.finished = finished
|
|
self.metrics = metrics
|
|
self.lora_request = lora_request
|
|
self.encoder_prompt = encoder_prompt
|
|
self.encoder_prompt_token_ids = encoder_prompt_token_ids
|
|
|
|
@classmethod
|
|
def from_seq_group(cls, seq_group: SequenceGroup,
|
|
use_cache: bool) -> Optional["RequestOutput"]:
|
|
sampling_params = seq_group.sampling_params
|
|
if sampling_params is None:
|
|
raise ValueError(
|
|
"Sampling parameters are missing for a CompletionRequest.")
|
|
|
|
finished = seq_group.is_finished()
|
|
if sampling_params.output_kind == RequestOutputKind.FINAL_ONLY and (
|
|
not finished):
|
|
return None
|
|
|
|
# Init cache (if needed)
|
|
if use_cache and seq_group.cached_request_output is None:
|
|
seq_group.cached_request_output = RequestOutput( # type: ignore
|
|
request_id="",
|
|
prompt=None,
|
|
prompt_token_ids=[],
|
|
prompt_logprobs=None,
|
|
outputs=[],
|
|
finished=False)
|
|
|
|
seqs = seq_group.get_seqs()
|
|
if len(seqs) == 1:
|
|
top_n_seqs = seqs
|
|
else:
|
|
# Get the top-n sequences.
|
|
n = sampling_params._real_n or sampling_params.n
|
|
sorting_key = lambda seq: seq.get_cumulative_logprob()
|
|
sorted_seqs = sorted(seqs, key=sorting_key, reverse=True)
|
|
top_n_seqs = sorted_seqs[:n]
|
|
|
|
# Create the outputs.
|
|
# NOTE: We need omit logprobs here explicitly because the sequence
|
|
# always has the logprobs of the sampled tokens even if the
|
|
# logprobs are not requested.
|
|
include_logprobs = sampling_params.logprobs is not None
|
|
text_buffer_length = sampling_params.output_text_buffer_length
|
|
delta = sampling_params.output_kind == RequestOutputKind.DELTA
|
|
|
|
outputs = []
|
|
include_prompt = True
|
|
for i, seq in enumerate(top_n_seqs):
|
|
output_text = seq.get_output_text_to_return(
|
|
text_buffer_length, delta)
|
|
|
|
output_token_ids = seq.get_output_token_ids_to_return(delta)
|
|
num_output_tokens = 1 if isinstance(output_token_ids,
|
|
int) else len(output_token_ids)
|
|
|
|
output_logprobs = seq.output_logprobs if include_logprobs else None
|
|
|
|
if delta:
|
|
# Slice logprobs delta if applicable
|
|
if output_logprobs:
|
|
output_logprobs = output_logprobs[-num_output_tokens:]
|
|
# Don't include prompt if this is after the first output
|
|
# containing decode token ids
|
|
if include_prompt and seq.get_output_len() > num_output_tokens:
|
|
include_prompt = False
|
|
|
|
if use_cache:
|
|
# Get cached output object
|
|
cached_outputs = seq_group.cached_request_output.outputs # type: ignore
|
|
if i >= len(cached_outputs):
|
|
cached_outputs.append(
|
|
CompletionOutput(index=i,
|
|
text="",
|
|
token_ids=[],
|
|
cumulative_logprob=None,
|
|
logprobs=None,
|
|
finish_reason=None,
|
|
stop_reason=None))
|
|
output = cached_outputs[i]
|
|
|
|
# Init cached output object
|
|
assert output.index == i
|
|
output.text = output_text
|
|
|
|
if isinstance(output_token_ids, int):
|
|
output.token_ids.clear()
|
|
output.token_ids.append(output_token_ids)
|
|
else:
|
|
output.token_ids = output_token_ids
|
|
|
|
output.cumulative_logprob = seq.get_cumulative_logprob() \
|
|
if include_logprobs else None
|
|
output.logprobs = output_logprobs
|
|
output.finish_reason = SequenceStatus.get_finished_reason(
|
|
seq.status)
|
|
output.stop_reason = seq.stop_reason
|
|
|
|
else:
|
|
output = CompletionOutput(
|
|
seqs.index(seq), output_text, [output_token_ids]
|
|
if isinstance(output_token_ids, int) else output_token_ids,
|
|
seq.get_cumulative_logprob() if include_logprobs else None,
|
|
output_logprobs,
|
|
SequenceStatus.get_finished_reason(seq.status),
|
|
seq.stop_reason)
|
|
|
|
outputs.append(output)
|
|
|
|
# Every sequence in the sequence group should have the same prompt.
|
|
if include_prompt:
|
|
prompt = seq_group.prompt
|
|
prompt_token_ids = seq_group.prompt_token_ids
|
|
encoder_prompt = seq_group.encoder_prompt
|
|
encoder_prompt_token_ids = seq_group.encoder_prompt_token_ids
|
|
prompt_logprobs = seq_group.prompt_logprobs
|
|
else:
|
|
prompt = None
|
|
prompt_token_ids = None
|
|
encoder_prompt = None
|
|
encoder_prompt_token_ids = None
|
|
prompt_logprobs = None
|
|
finished_time = time.time() if finished else None
|
|
seq_group.set_finished_time(finished_time)
|
|
|
|
init_args = (seq_group.request_id, prompt, prompt_token_ids,
|
|
prompt_logprobs, outputs, finished, seq_group.metrics,
|
|
seq_group.lora_request, encoder_prompt,
|
|
encoder_prompt_token_ids)
|
|
|
|
if use_cache:
|
|
request_output = seq_group.cached_request_output
|
|
request_output.__init__(*init_args) # type: ignore
|
|
|
|
else:
|
|
request_output = cls(*init_args)
|
|
|
|
return request_output
|
|
|
|
def __repr__(self) -> str:
|
|
return (f"RequestOutput(request_id={self.request_id}, "
|
|
f"prompt={self.prompt!r}, "
|
|
f"prompt_token_ids={self.prompt_token_ids}, "
|
|
f"encoder_prompt={self.encoder_prompt!r}, "
|
|
f"encoder_prompt_token_ids={self.encoder_prompt_token_ids}, "
|
|
f"prompt_logprobs={self.prompt_logprobs}, "
|
|
f"outputs={self.outputs}, "
|
|
f"finished={self.finished}, "
|
|
f"metrics={self.metrics}, "
|
|
f"lora_request={self.lora_request})")
|
|
|
|
|
|
class EmbeddingRequestOutput:
|
|
"""
|
|
The output data of an embedding request to the LLM.
|
|
|
|
Args:
|
|
request_id (str): A unique identifier for the embedding request.
|
|
outputs (EmbeddingOutput): The embedding results for the given input.
|
|
prompt_token_ids (List[int]): A list of token IDs used in the prompt.
|
|
finished (bool): A flag indicating whether the embedding is completed.
|
|
"""
|
|
|
|
def __init__(self, request_id: str, outputs: "EmbeddingOutput",
|
|
prompt_token_ids: List[int], finished: bool):
|
|
self.request_id = request_id
|
|
self.prompt_token_ids = prompt_token_ids
|
|
self.finished = finished
|
|
self.outputs = outputs
|
|
|
|
@classmethod
|
|
def from_seq_group(cls,
|
|
seq_group: 'SequenceGroup') -> "EmbeddingRequestOutput":
|
|
if seq_group.embeddings is None:
|
|
raise ValueError(
|
|
"Embeddings are missing in seq_group for EmbeddingRequest.")
|
|
output = EmbeddingOutput(seq_group.embeddings)
|
|
prompt_token_ids = seq_group.prompt_token_ids
|
|
finished = seq_group.is_finished()
|
|
|
|
return cls(seq_group.request_id, output, prompt_token_ids, finished)
|
|
|
|
def __repr__(self):
|
|
"""
|
|
Returns a string representation of an EmbeddingRequestOutput instance.
|
|
|
|
The representation includes the request_id and the number of outputs,
|
|
providing a quick overview of the embedding request's results.
|
|
|
|
Returns:
|
|
str: A string representation of the EmbeddingRequestOutput instance.
|
|
"""
|
|
return (f"EmbeddingRequestOutput(request_id='{self.request_id}', "
|
|
f"outputs={repr(self.outputs)}, "
|
|
f"prompt_token_ids={self.prompt_token_ids}, "
|
|
f"finished={self.finished})")
|
|
|
|
|
|
class RequestOutputFactory:
|
|
|
|
@staticmethod
|
|
def create(seq_group: SequenceGroup, use_cache: bool = False):
|
|
# Determine the type based on a condition, for example:
|
|
if hasattr(seq_group,
|
|
'embeddings') and seq_group.embeddings is not None:
|
|
return EmbeddingRequestOutput.from_seq_group(seq_group)
|
|
else:
|
|
return RequestOutput.from_seq_group(seq_group, use_cache)
|