Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk> Co-authored-by: litianjian <litianjian@bytedance.com> Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>
86 lines
2.5 KiB
Python
86 lines
2.5 KiB
Python
from dataclasses import dataclass
|
|
from functools import lru_cache
|
|
from typing import List, Literal
|
|
|
|
import numpy as np
|
|
import numpy.typing as npt
|
|
from huggingface_hub import hf_hub_download
|
|
from PIL import Image
|
|
|
|
from vllm.multimodal.utils import (sample_frames_from_video,
|
|
try_import_video_packages)
|
|
|
|
from .base import get_cache_dir
|
|
|
|
|
|
@lru_cache
|
|
def download_video_asset(filename: str) -> str:
|
|
"""
|
|
Download and open an image from huggingface
|
|
repo: raushan-testing-hf/videos-test
|
|
"""
|
|
video_directory = get_cache_dir() / "video-eample-data"
|
|
video_directory.mkdir(parents=True, exist_ok=True)
|
|
|
|
video_path = video_directory / filename
|
|
video_path_str = str(video_path)
|
|
if not video_path.exists():
|
|
video_path_str = hf_hub_download(
|
|
repo_id="raushan-testing-hf/videos-test",
|
|
filename=filename,
|
|
repo_type="dataset",
|
|
cache_dir=video_directory,
|
|
)
|
|
return video_path_str
|
|
|
|
|
|
def video_to_ndarrays(path: str, num_frames: int = -1) -> npt.NDArray:
|
|
cv2, _ = try_import_video_packages()
|
|
|
|
cap = cv2.VideoCapture(path)
|
|
if not cap.isOpened():
|
|
raise ValueError(f"Could not open video file {path}")
|
|
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
frames = []
|
|
for i in range(total_frames):
|
|
ret, frame = cap.read()
|
|
if ret:
|
|
frames.append(frame)
|
|
cap.release()
|
|
|
|
frames = np.stack(frames)
|
|
frames = sample_frames_from_video(frames, num_frames)
|
|
if len(frames) < num_frames:
|
|
raise ValueError(f"Could not read enough frames from video file {path}"
|
|
f" (expected {num_frames} frames, got {len(frames)})")
|
|
return frames
|
|
|
|
|
|
def video_to_pil_images_list(path: str,
|
|
num_frames: int = -1) -> List[Image.Image]:
|
|
cv2, _ = try_import_video_packages()
|
|
frames = video_to_ndarrays(path, num_frames)
|
|
return [
|
|
Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
|
for frame in frames
|
|
]
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class VideoAsset:
|
|
name: Literal["sample_demo_1.mp4"]
|
|
num_frames: int = -1
|
|
|
|
@property
|
|
def pil_images(self) -> List[Image.Image]:
|
|
video_path = download_video_asset(self.name)
|
|
ret = video_to_pil_images_list(video_path, self.num_frames)
|
|
return ret
|
|
|
|
@property
|
|
def np_ndarrays(self) -> npt.NDArray:
|
|
video_path = download_video_asset(self.name)
|
|
ret = video_to_ndarrays(video_path, self.num_frames)
|
|
return ret
|