vllm/vllm/model_executor/utils.py

53 lines
1.5 KiB
Python

"""Utils for model executor."""
import random
import importlib
from typing import Any, Dict, Optional
import numpy as np
import torch
from vllm.config import DeviceConfig, ModelConfig
DEVICE_TO_MODEL_LOADER_MAP = {
"cuda": "model_loader",
"neuron": "neuron_model_loader",
}
def set_random_seed(seed: int) -> None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def set_weight_attrs(
weight: torch.Tensor,
weight_attrs: Optional[Dict[str, Any]],
):
"""Set attributes on a weight tensor.
This method is used to set attributes on a weight tensor. This method
will not overwrite existing attributes.
Args:
weight: The weight tensor.
weight_attrs: A dictionary of attributes to set on the weight tensor.
"""
if weight_attrs is None:
return
for key, value in weight_attrs.items():
assert not hasattr(
weight, key), (f"Overwriting existing tensor attribute: {key}")
setattr(weight, key, value)
def get_model(model_config: ModelConfig, device_config: DeviceConfig,
**kwargs) -> torch.nn.Module:
model_loader_module = DEVICE_TO_MODEL_LOADER_MAP[device_config.device_type]
imported_model_loader = importlib.import_module(
f"vllm.model_executor.{model_loader_module}")
get_model_fn = imported_model_loader.get_model
return get_model_fn(model_config, device_config, **kwargs)