vllm/vllm/engine/protocol.py

104 lines
2.9 KiB
Python

from typing import (AsyncGenerator, List, Mapping, Optional, Protocol,
runtime_checkable)
from vllm.config import DecodingConfig, ModelConfig
from vllm.core.scheduler import SchedulerOutputs
from vllm.inputs.data import PromptType
from vllm.lora.request import LoRARequest
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.outputs import EmbeddingRequestOutput, RequestOutput
from vllm.pooling_params import PoolingParams
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer import AnyTokenizer
@runtime_checkable
class EngineClient(Protocol):
"""Protocol class for Clients to Engine"""
@property
def is_running(self) -> bool:
...
@property
def is_stopped(self) -> bool:
...
@property
def errored(self) -> bool:
...
@property
def dead_error(self) -> BaseException:
...
def generate(
self,
prompt: PromptType,
sampling_params: SamplingParams,
request_id: str,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> AsyncGenerator[RequestOutput, None]:
"""Generate outputs for a request."""
...
def encode(
self,
prompt: PromptType,
pooling_params: PoolingParams,
request_id: str,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
priority: int = 0,
) -> AsyncGenerator[EmbeddingRequestOutput, None]:
"""Generate outputs for a request from an embedding model."""
...
async def abort(self, request_id: str) -> None:
"""Abort a request.
Args:
request_id: The unique id of the request.
"""
async def get_model_config(self) -> ModelConfig:
"""Get the model configuration of the vLLM engine."""
...
async def get_decoding_config(self) -> DecodingConfig:
...
"""Get the decoding configuration of the vLLM engine."""
async def get_tokenizer(
self,
lora_request: Optional[LoRARequest] = None,
) -> AnyTokenizer:
"""Get the appropriate tokenizer for the request"""
...
async def is_tracing_enabled(self) -> bool:
...
async def do_log_stats(
self,
scheduler_outputs: Optional[SchedulerOutputs] = None,
model_output: Optional[List[SamplerOutput]] = None,
) -> None:
...
async def check_health(self) -> None:
"""Raise if unhealthy"""
...
async def start_profile(self) -> None:
"""Start profiling the engine"""
...
async def stop_profile(self) -> None:
"""Start profiling the engine"""
...