168 lines
6.4 KiB
Python
168 lines
6.4 KiB
Python
# Copied From https://github.com/FlagOpen/FlagGems
|
||
|
||
import inspect
|
||
|
||
import triton
|
||
|
||
|
||
class LibEntry(triton.KernelInterface):
|
||
|
||
def __init__(
|
||
self,
|
||
fn,
|
||
):
|
||
self.fn = fn
|
||
self.arg_names = fn.arg_names
|
||
self.divisibility = 16
|
||
self.kernel_cache = dict()
|
||
fn = self.fn
|
||
while not isinstance(fn, triton.runtime.JITFunction):
|
||
fn = fn.fn
|
||
self.jit_function: triton.runtime.JITFunction = fn
|
||
self.specialize_indices = [
|
||
p.num for p in self.jit_function.params
|
||
if not p.is_constexpr and not p.do_not_specialize
|
||
]
|
||
self.do_not_specialize_indices = [
|
||
p.num for p in self.jit_function.params
|
||
if not p.is_constexpr and p.do_not_specialize
|
||
]
|
||
|
||
def key(self, spec_args, dns_args, const_args):
|
||
spec_key = [(arg.dtype, arg.data_ptr() %
|
||
self.divisibility == 0) if hasattr(arg, "data_ptr") else
|
||
(type(arg), arg) for arg in spec_args]
|
||
dns_key = [
|
||
arg.dtype if hasattr(
|
||
arg, "data_ptr") else type(arg) if not isinstance(arg, int)
|
||
else "i32" if -(2**31) <= arg and arg <= 2**31 -
|
||
1 else "u64" if 2**63 <= arg and arg <= 2**64 - 1 else "i64"
|
||
for arg in dns_args
|
||
]
|
||
# const args passed by position
|
||
return tuple(spec_key + dns_key + const_args)
|
||
|
||
def run(self, *args, **kwargs):
|
||
grid = kwargs["grid"]
|
||
# collect all the arguments
|
||
spec_args = [] # specialize arguments
|
||
dns_args = [] # do not specialize arguments
|
||
const_args = [] # constexpr arguments
|
||
k_args = [] # kernel arguments
|
||
for i, arg in enumerate(args):
|
||
if i in self.specialize_indices:
|
||
k_args.append(arg)
|
||
spec_args.append(arg)
|
||
elif i in self.do_not_specialize_indices:
|
||
k_args.append(arg)
|
||
dns_args.append(arg)
|
||
else:
|
||
const_args.append(arg)
|
||
for p in self.jit_function.params[len(args):]:
|
||
if p.name in kwargs:
|
||
val = kwargs[p.name]
|
||
elif p.default is inspect._empty:
|
||
continue
|
||
else:
|
||
val = p.default
|
||
|
||
if p.is_constexpr:
|
||
const_args.append(val)
|
||
elif p.do_not_specialize:
|
||
dns_args.append(val)
|
||
k_args.append(val)
|
||
else:
|
||
spec_args.append(val)
|
||
k_args.append(val)
|
||
|
||
entry_key = self.key(spec_args, dns_args, const_args)
|
||
|
||
if entry_key not in self.kernel_cache:
|
||
# compile the kernel also completes the related computations
|
||
kernel = self.fn.run(*args, **kwargs)
|
||
fn = self.fn
|
||
# collect constexpr arguments for grid computation
|
||
constexprs = {}
|
||
while not isinstance(fn, triton.runtime.JITFunction):
|
||
if isinstance(fn, triton.runtime.Autotuner):
|
||
config = fn.best_config
|
||
constexprs["num_warps"] = config.num_warps
|
||
constexprs["num_stages"] = config.num_stages
|
||
constexprs["num_ctas"] = config.num_ctas
|
||
constexprs = {**constexprs, **config.kwargs}
|
||
elif isinstance(fn, triton.runtime.Heuristics):
|
||
for v, heur in fn.values.items():
|
||
constexprs[v] = heur({
|
||
**dict(zip(fn.arg_names, args)),
|
||
**kwargs,
|
||
**constexprs,
|
||
})
|
||
else:
|
||
raise RuntimeError("Invalid Runtime Function")
|
||
fn = fn.fn
|
||
# In vLLM, certain kernels like fused_moe_kernel get the
|
||
# best_config(as kwargs) from a configuration json file, rather
|
||
# than using Autotuner & Heuristics. Therefore, all their constexprs
|
||
# (tl.constexpr) are assigned values through the following loop.
|
||
for p in self.jit_function.params:
|
||
if p.is_constexpr and p.name not in constexprs:
|
||
constexprs[p.name] = p.default #default=inspect._empty
|
||
self.kernel_cache[entry_key] = (kernel, constexprs)
|
||
else:
|
||
# load kernel from cache directly
|
||
kernel, constexprs = self.kernel_cache[entry_key]
|
||
|
||
if callable(grid):
|
||
# collect all arguments to the grid fn,ie:
|
||
# 1. args,
|
||
# 2. kwargs,
|
||
# 3. all all other captured arguments in CompiledKernel from
|
||
# Autotunner & Heuristics when kwargs & captured args conflict,
|
||
# captured args have higher priority
|
||
# 4. We must filter out captured args with default value firstly
|
||
constexprs = {
|
||
k: v
|
||
for k, v in constexprs.items() if v is not inspect._empty
|
||
}
|
||
meta = {
|
||
**dict(zip(self.arg_names, args)),
|
||
**kwargs,
|
||
**constexprs,
|
||
}
|
||
grid = grid(meta)
|
||
if isinstance(grid, tuple):
|
||
grid = grid + (1, 1)
|
||
elif isinstance(grid, list):
|
||
grid = grid + [1, 1]
|
||
kernel[grid[0:3]](*k_args)
|
||
# maintaining the same return type as the JITFunction.run
|
||
return kernel
|
||
|
||
|
||
def libentry():
|
||
"""
|
||
Decorator for triton library entries.
|
||
Motivation:
|
||
The runtime overhead of Triton kernels is the reason for the lower
|
||
performance of small kernels, particularly evident with smaller models.
|
||
Using this decorator can reduce Triton runtime overhead.
|
||
How:
|
||
The `run` function of JITFunction needs to accomplish:
|
||
- Parameter binding using inspect
|
||
- KernelArg type wrapping
|
||
- Cache key calculation
|
||
When dealing with small size, these steps can become bottlenecks in
|
||
Triton runtime. Libentry simplifies these steps to reduce runtime
|
||
overhead, thereby improving the runtime expenses of small kernels.
|
||
NOTE:
|
||
When Triton is upgraded to version 3.0.0, libentry can be removed,
|
||
see: https://github.com/vllm-project/vllm/pull/5036#issuecomment-2243396245
|
||
|
||
|
||
"""
|
||
|
||
def decorator(fn):
|
||
return LibEntry(fn)
|
||
|
||
return decorator
|