Go to file
2023-12-16 22:05:18 -08:00
.github/workflows [CI/CD] Upgrade PyTorch version to v2.1.1 (#2045) 2023-12-11 17:48:11 -08:00
benchmarks Optimize model execution with CUDA graph (#1926) 2023-12-16 21:12:08 -08:00
csrc Add GPTQ support (#916) 2023-12-15 03:04:22 -08:00
docs [Docs] Add supported quantization methods to docs (#2135) 2023-12-15 13:29:22 -08:00
examples chore(examples-docs): upgrade to OpenAI V1 (#1785) 2023-12-03 01:11:22 -08:00
rocm_patch [ROCm] Upgrade xformers version for ROCm & update doc (#2079) 2023-12-13 00:56:05 -08:00
tests [BugFix] Fix input positions for long context with sliding window (#2088) 2023-12-13 12:28:13 -08:00
vllm [Minor] Delete Llama tokenizer warnings (#2146) 2023-12-16 22:05:18 -08:00
.gitignore Merge EmbeddedLLM/vllm-rocm into vLLM main (#1836) 2023-12-07 23:16:52 -08:00
.readthedocs.yaml Add .readthedocs.yaml (#136) 2023-06-02 22:27:44 -07:00
CONTRIBUTING.md [Quality] Add code formatter and linter (#326) 2023-07-03 11:31:55 -07:00
Dockerfile Optimize Mixtral with expert parallelism (#2090) 2023-12-13 23:55:07 -08:00
Dockerfile.rocm Fix Dockerfile.rocm (#2101) 2023-12-14 00:45:58 -08:00
format.sh Migrate linter from pylint to ruff (#1665) 2023-11-20 11:58:01 -08:00
LICENSE Add Apache-2.0 license (#102) 2023-05-14 18:05:19 -07:00
MANIFEST.in [PyPI] Packaging for PyPI distribution (#140) 2023-06-05 20:03:14 -07:00
mypy.ini Change the name to vLLM (#150) 2023-06-17 03:07:40 -07:00
patch_xformers.rocm.sh [ROCm] Upgrade xformers version for ROCm & update doc (#2079) 2023-12-13 00:56:05 -08:00
pyproject.toml [CI/CD] Upgrade PyTorch version to v2.1.1 (#2045) 2023-12-11 17:48:11 -08:00
README.md [Docs] Add supported quantization methods to docs (#2135) 2023-12-15 13:29:22 -08:00
requirements-build.txt [FIX] Fix docker build error (#1831) (#1832) 2023-11-29 23:06:50 -08:00
requirements-dev.txt Fix typing in AsyncLLMEngine & add toml to requirements-dev (#2100) 2023-12-14 00:19:41 -08:00
requirements-rocm.txt [ROCm] Upgrade xformers version for ROCm & update doc (#2079) 2023-12-13 00:56:05 -08:00
requirements.txt Optimize model execution with CUDA graph (#1926) 2023-12-16 21:12:08 -08:00
setup.py [ROCm] Temporarily remove GPTQ ROCm support (#2138) 2023-12-15 17:13:58 -08:00

vLLM

Easy, fast, and cheap LLM serving for everyone

| Documentation | Blog | Paper | Discord |


Latest News 🔥

  • [2023/12] Added ROCm support to vLLM.
  • [2023/10] We hosted the first vLLM meetup in SF! Please find the meetup slides here.
  • [2023/09] We created our Discord server! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
  • [2023/09] We released our PagedAttention paper on arXiv!
  • [2023/08] We would like to express our sincere gratitude to Andreessen Horowitz (a16z) for providing a generous grant to support the open-source development and research of vLLM.
  • [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
  • [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click example to start the vLLM demo, and the blog post for the story behind vLLM development on the clouds.
  • [2023/06] We officially released vLLM! FastChat-vLLM integration has powered LMSYS Vicuna and Chatbot Arena since mid-April. Check out our blog post.

vLLM is a fast and easy-to-use library for LLM inference and serving.

vLLM is fast with:

  • State-of-the-art serving throughput
  • Efficient management of attention key and value memory with PagedAttention
  • Continuous batching of incoming requests
  • Quantization: GPTQ, AWQ, SqueezeLLM
  • Optimized CUDA kernels

vLLM is flexible and easy to use with:

  • Seamless integration with popular Hugging Face models
  • High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more
  • Tensor parallelism support for distributed inference
  • Streaming outputs
  • OpenAI-compatible API server
  • Support NVIDIA GPUs and AMD GPUs.

vLLM seamlessly supports many Hugging Face models, including the following architectures:

  • Aquila & Aquila2 (BAAI/AquilaChat2-7B, BAAI/AquilaChat2-34B, BAAI/Aquila-7B, BAAI/AquilaChat-7B, etc.)
  • Baichuan & Baichuan2 (baichuan-inc/Baichuan2-13B-Chat, baichuan-inc/Baichuan-7B, etc.)
  • BLOOM (bigscience/bloom, bigscience/bloomz, etc.)
  • ChatGLM (THUDM/chatglm2-6b, THUDM/chatglm3-6b, etc.)
  • Falcon (tiiuae/falcon-7b, tiiuae/falcon-40b, tiiuae/falcon-rw-7b, etc.)
  • GPT-2 (gpt2, gpt2-xl, etc.)
  • GPT BigCode (bigcode/starcoder, bigcode/gpt_bigcode-santacoder, etc.)
  • GPT-J (EleutherAI/gpt-j-6b, nomic-ai/gpt4all-j, etc.)
  • GPT-NeoX (EleutherAI/gpt-neox-20b, databricks/dolly-v2-12b, stabilityai/stablelm-tuned-alpha-7b, etc.)
  • InternLM (internlm/internlm-7b, internlm/internlm-chat-7b, etc.)
  • LLaMA & LLaMA-2 (meta-llama/Llama-2-70b-hf, lmsys/vicuna-13b-v1.3, young-geng/koala, openlm-research/open_llama_13b, etc.)
  • Mistral (mistralai/Mistral-7B-v0.1, mistralai/Mistral-7B-Instruct-v0.1, etc.)
  • Mixtral (mistralai/Mixtral-8x7B-v0.1, mistralai/Mixtral-8x7B-Instruct-v0.1, etc.)
  • MPT (mosaicml/mpt-7b, mosaicml/mpt-30b, etc.)
  • OPT (facebook/opt-66b, facebook/opt-iml-max-30b, etc.)
  • Phi-1.5 (microsoft/phi-1_5, etc.)
  • Qwen (Qwen/Qwen-7B, Qwen/Qwen-7B-Chat, etc.)
  • Yi (01-ai/Yi-6B, 01-ai/Yi-34B, etc.)

Install vLLM with pip or from source:

pip install vllm

Getting Started

Visit our documentation to get started.

Contributing

We welcome and value any contributions and collaborations. Please check out CONTRIBUTING.md for how to get involved.

Citation

If you use vLLM for your research, please cite our paper:

@inproceedings{kwon2023efficient,
  title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
  author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
  booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
  year={2023}
}