vllm/vllm/outputs.py

219 lines
8.3 KiB
Python

import time
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
from vllm.lora.request import LoRARequest
from vllm.sequence import (PromptLogprobs, RequestMetrics, SampleLogprobs,
SequenceGroup, SequenceStatus)
@dataclass
class CompletionOutput:
"""The output data of one completion output of a request.
Args:
index: The index of the output in the request.
text: The generated output text.
token_ids: The token IDs of the generated output text.
cumulative_logprob: The cumulative log probability of the generated
output text.
logprobs: The log probabilities of the top probability words at each
position if the logprobs are requested.
finish_reason: The reason why the sequence is finished.
stop_reason: The stop string or token id that caused the completion
to stop, None if the completion finished for some other reason
including encountering the EOS token.
lora_request: The LoRA request that was used to generate the output.
"""
index: int
text: str
token_ids: Tuple[int, ...]
cumulative_logprob: float
logprobs: Optional[SampleLogprobs]
finish_reason: Optional[str] = None
stop_reason: Union[int, str, None] = None
lora_request: Optional[LoRARequest] = None
def finished(self) -> bool:
return self.finish_reason is not None
def __repr__(self) -> str:
return (f"CompletionOutput(index={self.index}, "
f"text={self.text!r}, "
f"token_ids={self.token_ids}, "
f"cumulative_logprob={self.cumulative_logprob}, "
f"logprobs={self.logprobs}, "
f"finish_reason={self.finish_reason}, "
f"stop_reason={self.stop_reason})")
@dataclass
class EmbeddingOutput:
"""The output data of one completion output of a request.
Args:
embedding: The embedding vector, which is a list of floats. The
length of vector depends on the model as listed in the embedding guide.
"""
embedding: List[float]
def __repr__(self) -> str:
return (f"EmbeddingOutput("
f"embedding={len(self.embedding)})")
class RequestOutput:
"""The output data of a completion request to the LLM.
Args:
request_id: The unique ID of the request.
prompt: The prompt string of the request.
prompt_token_ids: The token IDs of the prompt.
prompt_logprobs: The log probabilities to return per prompt token.
outputs: The output sequences of the request.
finished: Whether the whole request is finished.
metrics: Metrics associated with the request.
lora_request: The LoRA request that was used to generate the output.
"""
def __init__(
self,
request_id: str,
prompt: Optional[str],
prompt_token_ids: List[int],
prompt_logprobs: Optional[PromptLogprobs],
outputs: List[CompletionOutput],
finished: bool,
metrics: Optional[RequestMetrics] = None,
lora_request: Optional[LoRARequest] = None,
) -> None:
self.request_id = request_id
self.prompt = prompt
self.prompt_token_ids = prompt_token_ids
self.prompt_logprobs = prompt_logprobs
self.outputs = outputs
self.finished = finished
self.metrics = metrics
self.lora_request = lora_request
@classmethod
def from_seq_group(cls, seq_group: SequenceGroup) -> "RequestOutput":
if seq_group.sampling_params is None:
raise ValueError(
"Sampling parameters are missing for a CompletionRequest.")
seqs = seq_group.get_seqs()
if len(seqs) == 1:
top_n_seqs = seqs
else:
# Get the top-n sequences.
n = seq_group.sampling_params.n
if seq_group.sampling_params.use_beam_search:
sorting_key = lambda seq: seq.get_beam_search_score(
seq_group.sampling_params.length_penalty)
else:
sorting_key = lambda seq: seq.get_cumulative_logprob()
sorted_seqs = sorted(seqs, key=sorting_key, reverse=True)
top_n_seqs = sorted_seqs[:n]
# Create the outputs.
# NOTE: We need omit logprobs here explicitly because the sequence
# always has the logprobs of the sampled tokens even if the
# logprobs are not requested.
include_logprobs = seq_group.sampling_params.logprobs is not None
text_buffer_length = seq_group.sampling_params.output_text_buffer_length
outputs = [
CompletionOutput(seqs.index(seq),
seq.get_output_text_to_return(text_buffer_length),
seq.get_output_token_ids(),
seq.get_cumulative_logprob(),
seq.output_logprobs if include_logprobs else None,
SequenceStatus.get_finished_reason(seq.status),
seq.stop_reason) for seq in top_n_seqs
]
# Every sequence in the sequence group should have the same prompt.
prompt = seq_group.prompt
prompt_token_ids = seq_group.prompt_token_ids
prompt_logprobs = seq_group.prompt_logprobs
finished = seq_group.is_finished()
finished_time = time.time() if finished else None
seq_group.set_finished_time(finished_time)
return cls(seq_group.request_id,
prompt,
prompt_token_ids,
prompt_logprobs,
outputs,
finished,
seq_group.metrics,
lora_request=seq_group.lora_request)
def __repr__(self) -> str:
return (f"RequestOutput(request_id={self.request_id}, "
f"prompt={self.prompt!r}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"prompt_logprobs={self.prompt_logprobs}, "
f"outputs={self.outputs}, "
f"finished={self.finished}, "
f"metrics={self.metrics}, "
f"lora_request={self.lora_request})")
class EmbeddingRequestOutput:
"""
The output data of an embedding request to the LLM.
Args:
request_id (str): A unique identifier for the embedding request.
outputs (EmbeddingOutput): The embedding results for the given input.
prompt_token_ids (List[int]): A list of token IDs used in the prompt.
finished (bool): A flag indicating whether the embedding is completed.
"""
def __init__(self, request_id: str, outputs: "EmbeddingOutput",
prompt_token_ids: List[int], finished: bool):
self.request_id = request_id
self.prompt_token_ids = prompt_token_ids
self.finished = finished
self.outputs = outputs
@classmethod
def from_seq_group(cls,
seq_group: 'SequenceGroup') -> "EmbeddingRequestOutput":
if seq_group.embeddings is None:
raise ValueError(
"Embeddings are missing in seq_group for EmbeddingRequest.")
output = EmbeddingOutput(seq_group.embeddings)
prompt_token_ids = seq_group.prompt_token_ids
finished = seq_group.is_finished()
return cls(seq_group.request_id, output, prompt_token_ids, finished)
def __repr__(self):
"""
Returns a string representation of an EmbeddingRequestOutput instance.
The representation includes the request_id and the number of outputs,
providing a quick overview of the embedding request's results.
Returns:
str: A string representation of the EmbeddingRequestOutput instance.
"""
return (f"EmbeddingRequestOutput(request_id='{self.request_id}', "
f"outputs={repr(self.outputs)}, "
f"prompt_token_ids={self.prompt_token_ids}, "
f"finished={self.finished})")
class RequestOutputFactory:
@staticmethod
def create(seq_group):
# Determine the type based on a condition, for example:
if hasattr(seq_group,
'embeddings') and seq_group.embeddings is not None:
return EmbeddingRequestOutput.from_seq_group(seq_group)
else:
return RequestOutput.from_seq_group(seq_group)