522 lines
20 KiB
Plaintext
522 lines
20 KiB
Plaintext
#pragma once
|
|
#include <stddef.h>
|
|
#include <torch/all.h>
|
|
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
|
|
// clang-format will break include orders
|
|
// clang-format off
|
|
#include "cute/tensor.hpp"
|
|
#include "cute/atom/mma_atom.hpp"
|
|
#include "cutlass/numeric_types.h"
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/gemm_coord.h"
|
|
#include "cutlass/arch/mma_sm75.h"
|
|
#include "cutlass/arch/arch.h"
|
|
#include "cutlass/arch/mma.h"
|
|
#include "cutlass/gemm/device/gemm.h"
|
|
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
|
|
|
#include "cutlass/epilogue/threadblock/fusion/visitors.hpp"
|
|
#include "cutlass/gemm/kernel/default_gemm_universal_with_visitor.h"
|
|
|
|
#include "broadcast_load_epilogue_c2x.hpp"
|
|
#include "common.hpp"
|
|
// clang-format on
|
|
|
|
using namespace cute;
|
|
|
|
/*
|
|
Epilogue functions can be defined to post-process the output before it is
|
|
written to GPU memory.
|
|
Epilogues must contain a public type named EVTCompute of type Sm80EVT,
|
|
as well as a static prepare_args function that constructs an
|
|
EVTCompute::Arguments struct.
|
|
*/
|
|
|
|
namespace vllm {
|
|
|
|
// Wrappers for the GEMM kernel that is used to guard against compilation on
|
|
// architectures that will never use the kernel. The purpose of this is to
|
|
// reduce the size of the compiled binary.
|
|
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
|
|
// into code that will be executed on the device where it is defined.
|
|
template <typename Kernel>
|
|
struct enable_sm75_to_sm80 : Kernel {
|
|
template <typename... Args>
|
|
CUTLASS_DEVICE static void invoke(Args&&... args) {
|
|
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 750 && __CUDA_ARCH__ < 800
|
|
Kernel::invoke(std::forward<Args>(args)...);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <typename Kernel>
|
|
struct enable_sm80_to_sm89 : Kernel {
|
|
template <typename... Args>
|
|
CUTLASS_DEVICE static void invoke(Args&&... args) {
|
|
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 800 && __CUDA_ARCH__ < 890
|
|
Kernel::invoke(std::forward<Args>(args)...);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <typename Kernel>
|
|
struct enable_sm89_to_sm90 : Kernel {
|
|
template <typename... Args>
|
|
CUTLASS_DEVICE static void invoke(Args&&... args) {
|
|
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 890 && __CUDA_ARCH__ < 900
|
|
Kernel::invoke(std::forward<Args>(args)...);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
/*
|
|
* This class provides the common load descriptors for the
|
|
* ScaledEpilogue[...] classes
|
|
*/
|
|
template <typename ElementD, typename OutputTileThreadMap>
|
|
struct ScaledEpilogueBase {
|
|
protected:
|
|
using Accum = cutlass::epilogue::threadblock::VisitorAccFetch;
|
|
|
|
template <typename T>
|
|
using ColOrScalarLoad =
|
|
cutlass::epilogue::threadblock::VisitorColOrScalarBroadcast<
|
|
OutputTileThreadMap, T, Stride<Int<1>, Int<0>, Int<0>>>;
|
|
|
|
template <typename T>
|
|
using RowOrScalarLoad =
|
|
cutlass::epilogue::threadblock::VisitorRowOrScalarBroadcast<
|
|
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;
|
|
|
|
template <typename T>
|
|
using ColLoad = cutlass::epilogue::threadblock::VisitorColBroadcast<
|
|
OutputTileThreadMap, T, Stride<Int<1>, Int<0>, Int<0>>>;
|
|
|
|
template <typename T>
|
|
using RowLoad = cutlass::epilogue::threadblock::VisitorRowBroadcast<
|
|
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;
|
|
|
|
template <typename T>
|
|
using RowOrZeroLoad =
|
|
cutlass::epilogue::threadblock::VisitorRowOrZeroBroadcast<
|
|
OutputTileThreadMap, T, Stride<Int<0>, Int<1>, Int<0>>>;
|
|
|
|
// This utility function constructs the arguments for the load descriptors
|
|
// from a tensor. It can handle both row and column, as well as row/column or
|
|
// scalar cases.
|
|
template <typename Descriptor, typename T>
|
|
static auto args_from_tensor(torch::Tensor const& tensor) {
|
|
using Arguments = typename Descriptor::Arguments;
|
|
auto* data_ptr = static_cast<T*>(tensor.data_ptr());
|
|
if constexpr (std::is_same_v<Descriptor, ColOrScalarLoad<T>> ||
|
|
std::is_same_v<Descriptor, RowOrScalarLoad<T>>) {
|
|
return Arguments{data_ptr, tensor.numel() != 1};
|
|
} else {
|
|
// it would technically work but no use case as data_ptr is never nullptr
|
|
static_assert(!std::is_same_v<Descriptor, RowOrZeroLoad<T>>);
|
|
return Arguments{data_ptr};
|
|
}
|
|
}
|
|
|
|
// This overload handles the case where there might not be a tensor, in which
|
|
// case a nullptr is passed and a constant (0) is used.
|
|
template <typename Descriptor, typename T>
|
|
static auto args_from_tensor(c10::optional<torch::Tensor> const& tensor) {
|
|
static_assert(std::is_same_v<Descriptor, RowOrZeroLoad<T>>);
|
|
using Arguments = typename Descriptor::Arguments;
|
|
auto* data_ptr = tensor ? static_cast<T*>(tensor->data_ptr()) : nullptr;
|
|
return Arguments{data_ptr};
|
|
}
|
|
};
|
|
|
|
/*
|
|
This epilogue function defines a quantized GEMM operation similar to
|
|
torch._scaled_mm.
|
|
|
|
A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or
|
|
per-row. B can be quantized per-tensor or per-column.
|
|
Any combination of per-tensor and per-row or column is supported.
|
|
A and B must have symmetric quantization (zero point == 0).
|
|
|
|
So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
|
|
scales are applied elementwise with numpy-style broadcasting.
|
|
|
|
ScaleA and ScaleB define the epilogue functions that apply the scales for
|
|
the A and B operands respectively. These scales may be either per-tensor or
|
|
per row or column.
|
|
*/
|
|
template <typename ElementD, typename OutputTileThreadMap>
|
|
struct ScaledEpilogue
|
|
: private ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
|
|
private:
|
|
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
|
|
using Accum = typename SUPER::Accum;
|
|
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
|
|
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
|
|
|
|
using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
|
|
cutlass::multiplies, float, float,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
using EVTCompute0 =
|
|
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
|
|
|
|
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
|
|
cutlass::multiplies, ElementD, float,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
public:
|
|
using EVTCompute =
|
|
cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA, EVTCompute0>;
|
|
using ArgumentType = typename EVTCompute::Arguments;
|
|
|
|
static ArgumentType prepare_args(torch::Tensor const& a_scales,
|
|
torch::Tensor const& b_scales) {
|
|
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
|
|
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
|
|
|
|
typename EVTCompute0::Arguments evt0_args{b_args};
|
|
return ArgumentType{a_args, evt0_args};
|
|
}
|
|
};
|
|
|
|
/*
|
|
* This epilogue performs the same operation as ScaledEpilogue, but adds a bias.
|
|
* This bias can also be used in the per-tensor azp case, where the activation
|
|
* zero point (azp) is used to compute an azp correction term,
|
|
* which is folded into the bias.
|
|
*
|
|
* The bias tensor must be per-output channel.
|
|
* ScaleA and ScaleB can be per-tensor or per-token/per-channel.
|
|
*/
|
|
template <typename ElementD, typename OutputTileThreadMap>
|
|
struct ScaledEpilogueBias
|
|
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
|
|
protected:
|
|
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
|
|
using Accum = typename SUPER::Accum;
|
|
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
|
|
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
|
|
using Bias = typename SUPER::template RowLoad<ElementD>;
|
|
using Compute0 = cutlass::epilogue::threadblock::VisitorCompute<
|
|
cutlass::multiplies, float, float,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
using EVTCompute0 =
|
|
cutlass::epilogue::threadblock::Sm80EVT<Compute0, ScaleB, Accum>;
|
|
|
|
using Compute1 = cutlass::epilogue::threadblock::VisitorCompute<
|
|
cutlass::multiply_add, ElementD, float,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
public:
|
|
using EVTCompute = cutlass::epilogue::threadblock::Sm80EVT<Compute1, ScaleA,
|
|
EVTCompute0, Bias>;
|
|
using ArgumentType = typename EVTCompute::Arguments;
|
|
static ArgumentType prepare_args(torch::Tensor const& a_scales,
|
|
torch::Tensor const& b_scales,
|
|
torch::Tensor const& bias) {
|
|
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
|
|
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
|
|
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
|
|
|
|
typename EVTCompute0::Arguments evt0_args{b_args};
|
|
return ArgumentType{a_args, evt0_args, bias_args};
|
|
}
|
|
};
|
|
|
|
/*
|
|
* This epilogue directly supports per-tensor azp in int32 form.
|
|
* As opposed to the per-token epilogue below, this epilogue only has an azp_adj
|
|
* term, which should already be multiplied with the scalar azp.
|
|
* The azp_adj term is a 1D tensor of shape (1,n), computed as azp * J @ B.
|
|
*
|
|
* This epilogue also supports bias, which remains per-channel.
|
|
*/
|
|
template <typename ElementD, typename OutputTileThreadMap>
|
|
struct ScaledEpilogueBiasAzp
|
|
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
|
|
private:
|
|
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
|
|
using Accum = typename SUPER::Accum;
|
|
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
|
|
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
|
|
using Bias = typename SUPER::template RowOrZeroLoad<ElementD>;
|
|
|
|
// This is the full AZP term, azp * J @ B, shape (1,n)
|
|
using AzpWithAdj = typename SUPER::template RowLoad<int32_t>;
|
|
|
|
// Compute float(accum - azp_adj), both operands are int32_t
|
|
using ComputeAzp = cutlass::epilogue::threadblock::VisitorCompute<
|
|
cutlass::minus, float, int32_t,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
using EVTComputeAzp =
|
|
cutlass::epilogue::threadblock::Sm80EVT<ComputeAzp, Accum, AzpWithAdj>;
|
|
|
|
using ComputeScaleB = cutlass::epilogue::threadblock::VisitorCompute<
|
|
cutlass::multiplies, float, float,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
using EVTComputeScaleB =
|
|
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleB, ScaleB,
|
|
EVTComputeAzp>;
|
|
|
|
using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
|
|
cutlass::multiply_add, ElementD, float,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
public:
|
|
using EVTCompute =
|
|
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleBiasA, ScaleA,
|
|
EVTComputeScaleB, Bias>;
|
|
|
|
using ArgumentType = typename EVTCompute::Arguments;
|
|
|
|
static ArgumentType prepare_args(torch::Tensor const& a_scales,
|
|
torch::Tensor const& b_scales,
|
|
torch::Tensor const& azp_adj,
|
|
c10::optional<torch::Tensor> const& bias) {
|
|
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
|
|
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
|
|
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
|
|
auto azp_adj_args =
|
|
SUPER::template args_from_tensor<AzpWithAdj, int32_t>(azp_adj);
|
|
|
|
typename EVTComputeAzp::Arguments evt_azp_args{{}, azp_adj_args};
|
|
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_azp_args};
|
|
return ArgumentType{a_args, evt_scale_b_args, bias_args};
|
|
}
|
|
};
|
|
|
|
/*
|
|
* This epilogue supports per-token azp by computing and applying
|
|
* the correction term using a rank-1 update. If the term were materialized,
|
|
* it would require O(m*n) space, and this way it only requires O(m+n) space.
|
|
* The azp term is a 1D tensor of shape (m,1), and represents the unscaled zero
|
|
* point for each row of A.
|
|
* The azp_adj term is a 1D tensor of shape (1,n), computed as J @ B.
|
|
*
|
|
* This epilogue also supports bias, which remains per-channel.
|
|
*/
|
|
template <typename ElementD, typename OutputTileThreadMap>
|
|
struct ScaledEpilogueBiasAzpToken
|
|
: protected ScaledEpilogueBase<ElementD, OutputTileThreadMap> {
|
|
private:
|
|
using SUPER = ScaledEpilogueBase<ElementD, OutputTileThreadMap>;
|
|
using Accum = typename SUPER::Accum;
|
|
using ScaleA = typename SUPER::template ColOrScalarLoad<float>;
|
|
using ScaleB = typename SUPER::template RowOrScalarLoad<float>;
|
|
using Bias = typename SUPER::template RowOrZeroLoad<ElementD>;
|
|
|
|
// Per-token azp term, shape (m,1)
|
|
using Azp = typename SUPER::template ColLoad<int32_t>;
|
|
|
|
// This is the AZP adjustment term, J @ B, shape (1,n)
|
|
using AzpAdj = typename SUPER::template RowLoad<int32_t>;
|
|
|
|
// Compute azp * azp_adj
|
|
using ComputeAzp = cutlass::epilogue::threadblock::VisitorCompute<
|
|
cutlass::multiplies, int32_t, int32_t,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
using EVTComputeAzp =
|
|
cutlass::epilogue::threadblock::Sm80EVT<ComputeAzp, Azp, AzpAdj>;
|
|
|
|
// Compute float(accum - azp*azp_adj), all operands are int32_t
|
|
using ComputeAcc = cutlass::epilogue::threadblock::VisitorCompute<
|
|
cutlass::minus, float, int32_t,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
using EVTComputeAcc =
|
|
cutlass::epilogue::threadblock::Sm80EVT<ComputeAcc, Accum, EVTComputeAzp>;
|
|
|
|
using ComputeScaleB = cutlass::epilogue::threadblock::VisitorCompute<
|
|
cutlass::multiplies, float, float,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
using EVTComputeScaleB =
|
|
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleB, ScaleB,
|
|
EVTComputeAcc>;
|
|
|
|
using ComputeScaleBiasA = cutlass::epilogue::threadblock::VisitorCompute<
|
|
cutlass::multiply_add, ElementD, float,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
public:
|
|
using EVTCompute =
|
|
cutlass::epilogue::threadblock::Sm80EVT<ComputeScaleBiasA, ScaleA,
|
|
EVTComputeScaleB, Bias>;
|
|
|
|
using ArgumentType = typename EVTCompute::Arguments;
|
|
|
|
static ArgumentType prepare_args(torch::Tensor const& a_scales,
|
|
torch::Tensor const& b_scales,
|
|
torch::Tensor const& azp_adj,
|
|
torch::Tensor const& azp,
|
|
c10::optional<torch::Tensor> const& bias) {
|
|
auto a_args = SUPER::template args_from_tensor<ScaleA, float>(a_scales);
|
|
auto b_args = SUPER::template args_from_tensor<ScaleB, float>(b_scales);
|
|
auto bias_args = SUPER::template args_from_tensor<Bias, ElementD>(bias);
|
|
auto azp_args = SUPER::template args_from_tensor<Azp, int32_t>(azp);
|
|
auto azp_adj_args =
|
|
SUPER::template args_from_tensor<AzpAdj, int32_t>(azp_adj);
|
|
|
|
typename EVTComputeAzp::Arguments evt_azp_args{azp_args, azp_adj_args};
|
|
typename EVTComputeAcc::Arguments evt_acc_args{{}, evt_azp_args};
|
|
typename EVTComputeScaleB::Arguments evt_scale_b_args{b_args, evt_acc_args};
|
|
return ArgumentType{a_args, evt_scale_b_args, bias_args};
|
|
}
|
|
};
|
|
|
|
template <typename Arch, template <typename> typename ArchGuard,
|
|
typename ElementAB_, typename ElementD_,
|
|
template <typename, typename> typename Epilogue_, typename TileShape,
|
|
typename WarpShape, typename InstructionShape, int32_t MainLoopStages,
|
|
typename FP8MathOperator = cutlass::arch::OpMultiplyAdd>
|
|
struct cutlass_2x_gemm {
|
|
using ElementAB = ElementAB_;
|
|
using ElementD = ElementD_;
|
|
|
|
using ElementAcc =
|
|
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
|
|
float>::type;
|
|
|
|
using Operator =
|
|
typename std::conditional<std::is_same_v<ElementAB, int8_t>,
|
|
cutlass::arch::OpMultiplyAddSaturate,
|
|
FP8MathOperator>::type;
|
|
|
|
using OutputTileThreadMap =
|
|
cutlass::epilogue::threadblock::OutputTileThreadLayout<
|
|
TileShape, WarpShape, float, 4, 1 /* epilogue stages */
|
|
>;
|
|
|
|
using Epilogue = Epilogue_<ElementD, OutputTileThreadMap>;
|
|
using EVTCompute = typename Epilogue::EVTCompute;
|
|
|
|
using D = cutlass::epilogue::threadblock::VisitorAuxStore<
|
|
OutputTileThreadMap, ElementD, cutlass::FloatRoundStyle::round_to_nearest,
|
|
Stride<int64_t, Int<1>, Int<0>>>;
|
|
|
|
using EVTD = cutlass::epilogue::threadblock::Sm80EVT<D, EVTCompute>;
|
|
|
|
// clang-format off
|
|
using RowMajor = typename cutlass::layout::RowMajor;
|
|
using ColumnMajor = typename cutlass::layout::ColumnMajor;
|
|
using KernelType =
|
|
ArchGuard<typename cutlass::gemm::kernel::DefaultGemmWithVisitor<
|
|
ElementAB, RowMajor, cutlass::ComplexTransform::kNone, 16,
|
|
ElementAB, ColumnMajor, cutlass::ComplexTransform::kNone, 16,
|
|
float, cutlass::layout::RowMajor, 4,
|
|
ElementAcc, float, cutlass::arch::OpClassTensorOp,
|
|
Arch,
|
|
TileShape, WarpShape, InstructionShape,
|
|
EVTD,
|
|
cutlass::gemm::threadblock::ThreadblockSwizzleStreamK,
|
|
MainLoopStages, Operator,
|
|
1 /* epilogue stages */
|
|
>::GemmKernel>;
|
|
// clang-format on
|
|
|
|
using Op = cutlass::gemm::device::GemmUniversalAdapter<KernelType>;
|
|
};
|
|
|
|
template <typename Gemm, typename... EpilogueArgs>
|
|
inline void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
|
|
torch::Tensor const& b,
|
|
EpilogueArgs&&... epilogue_params) {
|
|
using ElementAB = typename Gemm::ElementAB;
|
|
using ElementD = typename Gemm::ElementD;
|
|
|
|
int32_t m = a.size(0);
|
|
int32_t n = b.size(1);
|
|
int32_t k = a.size(1);
|
|
cutlass::gemm::GemmCoord problem_size{m, n, k};
|
|
|
|
int64_t lda = a.stride(0);
|
|
int64_t ldb = b.stride(1);
|
|
int64_t ldc = out.stride(0);
|
|
|
|
using StrideC = Stride<int64_t, Int<1>, Int<0>>;
|
|
StrideC c_stride{ldc, Int<1>{}, Int<0>{}};
|
|
|
|
auto a_ptr = static_cast<ElementAB const*>(a.data_ptr());
|
|
auto b_ptr = static_cast<ElementAB const*>(b.data_ptr());
|
|
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
|
|
|
|
typename Gemm::D::Arguments d_args{c_ptr, c_stride};
|
|
|
|
using Epilogue = typename Gemm::Epilogue;
|
|
auto evt_args =
|
|
Epilogue::prepare_args(std::forward<EpilogueArgs>(epilogue_params)...);
|
|
|
|
typename Gemm::EVTD::Arguments epilogue_args{
|
|
evt_args,
|
|
d_args,
|
|
};
|
|
|
|
typename Gemm::Op::Arguments args{
|
|
cutlass::gemm::GemmUniversalMode::kGemmSplitKParallel, // universal mode
|
|
problem_size, // problem size
|
|
1, // batch count
|
|
epilogue_args,
|
|
a_ptr,
|
|
b_ptr,
|
|
nullptr,
|
|
nullptr,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
lda,
|
|
ldb,
|
|
ldc,
|
|
ldc};
|
|
|
|
// Launch the CUTLASS GEMM kernel.
|
|
typename Gemm::Op gemm_op;
|
|
size_t workspace_size = gemm_op.get_workspace_size(args);
|
|
auto const workspace_options =
|
|
torch::TensorOptions().dtype(torch::kUInt8).device(a.device());
|
|
auto workspace = torch::empty(workspace_size, workspace_options);
|
|
|
|
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
|
|
|
|
CUTLASS_CHECK(gemm_op.can_implement(args));
|
|
cutlass::Status status = gemm_op(args, workspace.data_ptr(), stream);
|
|
CUTLASS_CHECK(status);
|
|
}
|
|
|
|
template <typename Gemm, typename FallbackGemm, typename... EpilogueArgs>
|
|
inline void fallback_cutlass_gemm_caller(torch::Tensor& out,
|
|
torch::Tensor const& a,
|
|
torch::Tensor const& b,
|
|
EpilogueArgs&&... args) {
|
|
// In some cases, the GPU isn't able to accommodate the
|
|
// shared memory requirements of the Gemm. In such cases, use
|
|
// the FallbackGemm instead.
|
|
static const int max_shared_mem_per_block_opt_in =
|
|
get_cuda_max_shared_memory_per_block_opt_in(0);
|
|
|
|
size_t const gemm_shared_mem_size =
|
|
sizeof(typename Gemm::KernelType::SharedStorage);
|
|
size_t const fallback_gemm_shared_mem_size =
|
|
sizeof(typename FallbackGemm::KernelType::SharedStorage);
|
|
|
|
if (gemm_shared_mem_size <= max_shared_mem_per_block_opt_in) {
|
|
return cutlass_gemm_caller<Gemm>(out, a, b,
|
|
std::forward<EpilogueArgs>(args)...);
|
|
} else {
|
|
TORCH_CHECK(fallback_gemm_shared_mem_size <=
|
|
max_shared_mem_per_block_opt_in);
|
|
return cutlass_gemm_caller<FallbackGemm>(
|
|
out, a, b, std::forward<EpilogueArgs>(args)...);
|
|
}
|
|
}
|
|
|
|
} // namespace vllm
|