vllm/vllm/transformers_utils/tokenizer.py

205 lines
7.6 KiB
Python

import os
import warnings
from pathlib import Path
from types import MethodType
from typing import Optional, Union
import huggingface_hub
from transformers import (AutoTokenizer, PreTrainedTokenizer,
PreTrainedTokenizerFast)
from vllm.envs import VLLM_USE_MODELSCOPE
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.transformers_utils.tokenizers import (BaichuanTokenizer,
MistralTokenizer)
from vllm.transformers_utils.utils import check_gguf_file
from vllm.utils import make_async
logger = init_logger(__name__)
AnyTokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast,
MistralTokenizer]
def get_cached_tokenizer(tokenizer: AnyTokenizer) -> AnyTokenizer:
"""Get tokenizer with cached properties.
This will patch the tokenizer object in place.
By default, transformers will recompute multiple tokenizer properties
each time they are called, leading to a significant slowdown. This
function caches these properties for faster access."""
tokenizer_all_special_ids = set(tokenizer.all_special_ids)
tokenizer_all_special_tokens_extended = (
tokenizer.all_special_tokens_extended)
tokenizer_all_special_tokens = set(tokenizer.all_special_tokens)
tokenizer_len = len(tokenizer)
class CachedTokenizer(tokenizer.__class__): # type: ignore
@property
def all_special_ids(self):
return tokenizer_all_special_ids
@property
def all_special_tokens(self):
return tokenizer_all_special_tokens
@property
def all_special_tokens_extended(self):
return tokenizer_all_special_tokens_extended
def __len__(self):
return tokenizer_len
CachedTokenizer.__name__ = f"Cached{tokenizer.__class__.__name__}"
tokenizer.__class__ = CachedTokenizer
return tokenizer
def get_tokenizer(
tokenizer_name: Union[str, Path],
*args,
tokenizer_mode: str = "auto",
trust_remote_code: bool = False,
revision: Optional[str] = None,
download_dir: Optional[str] = None,
**kwargs,
) -> AnyTokenizer:
"""Gets a tokenizer for the given model name via HuggingFace or ModelScope.
"""
if VLLM_USE_MODELSCOPE:
# download model from ModelScope hub,
# lazy import so that modelscope is not required for normal use.
# pylint: disable=C.
from modelscope.hub.snapshot_download import snapshot_download
# Only set the tokenizer here, model will be downloaded on the workers.
if not os.path.exists(tokenizer_name):
tokenizer_path = snapshot_download(
model_id=tokenizer_name,
cache_dir=download_dir,
revision=revision,
local_files_only=huggingface_hub.constants.HF_HUB_OFFLINE,
# Ignore weights - we only need the tokenizer.
ignore_file_pattern=[".*.pt", ".*.safetensors", ".*.bin"])
tokenizer_name = tokenizer_path
if tokenizer_mode == "slow":
if kwargs.get("use_fast", False):
raise ValueError(
"Cannot use the fast tokenizer in slow tokenizer mode.")
kwargs["use_fast"] = False
if "truncation_side" not in kwargs:
kwargs["truncation_side"] = "left"
# Separate model folder from file path for GGUF models
is_gguf = check_gguf_file(tokenizer_name)
if is_gguf:
kwargs["gguf_file"] = Path(tokenizer_name).name
tokenizer_name = Path(tokenizer_name).parent
# if tokenizer is from official mistral org
is_from_mistral_org = str(tokenizer_name).split("/")[0] == "mistralai"
if is_from_mistral_org and tokenizer_mode != "mistral":
warnings.warn(
'It is strongly recommended to run mistral models with '
'`--tokenizer_mode "mistral"` to ensure correct '
'encoding and decoding.',
FutureWarning,
stacklevel=2)
if tokenizer_mode == "mistral":
tokenizer = MistralTokenizer.from_pretrained(str(tokenizer_name),
revision=revision)
else:
try:
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name,
*args,
trust_remote_code=trust_remote_code,
revision=revision,
**kwargs,
)
except ValueError as e:
# If the error pertains to the tokenizer class not existing or not
# currently being imported,
# suggest using the --trust-remote-code flag.
if not trust_remote_code and (
"does not exist or is not currently imported." in str(e)
or "requires you to execute the tokenizer file" in str(e)):
err_msg = ("Failed to load the tokenizer. If the tokenizer "
"is a custom tokenizer not yet available in the "
"HuggingFace transformers library, consider "
"setting `trust_remote_code=True` in LLM or using "
"the `--trust-remote-code` flag in the CLI.")
raise RuntimeError(err_msg) from e
else:
raise e
except AttributeError as e:
if "BaichuanTokenizer" in str(e):
# This is for the error "'BaichuanTokenizer' object has no
# attribute 'sp_model'".
tokenizer = BaichuanTokenizer.from_pretrained(
tokenizer_name,
*args,
trust_remote_code=trust_remote_code,
revision=revision,
**kwargs,
)
else:
raise e
# NOTE: We can remove this after https://github.com/THUDM/ChatGLM3/issues/1324
if type(tokenizer).__name__ in ("ChatGLMTokenizer",
"ChatGLM4Tokenizer"):
assert isinstance(tokenizer, PreTrainedTokenizer)
orig_pad = tokenizer._pad
# Patch _pad method to accept `padding_side`
def _pad(
self: PreTrainedTokenizer,
*args,
padding_side: Optional[str] = None,
**kwargs,
):
if (padding_side is not None
and padding_side != self.padding_side):
msg = ("`padding_side` argument is not supported by "
"ChatGLMTokenizer and will be ignored.")
warnings.warn(msg, stacklevel=2)
return orig_pad(*args, **kwargs)
tokenizer._pad = MethodType(_pad, tokenizer)
if not isinstance(tokenizer, PreTrainedTokenizerFast):
logger.warning(
"Using a slow tokenizer. This might cause a significant "
"slowdown. Consider using a fast tokenizer instead.")
tokenizer = get_cached_tokenizer(tokenizer)
return tokenizer
def get_lora_tokenizer(lora_request: LoRARequest, *args,
**kwargs) -> Optional[AnyTokenizer]:
if lora_request is None:
return None
try:
tokenizer = get_tokenizer(lora_request.lora_path, *args, **kwargs)
except Exception as e:
# No tokenizer was found in the LoRA folder,
# use base model tokenizer
logger.warning(
"No tokenizer found in %s, using base model tokenizer instead. "
"(Exception: %s)", lora_request.lora_path, e)
tokenizer = None
return tokenizer
get_lora_tokenizer_async = make_async(get_lora_tokenizer)