689 lines
25 KiB
Python
689 lines
25 KiB
Python
# Adapted from
|
|
# https://github.com/THUDM/GLM-4
|
|
"""Inference-only ChatGLM model compatible with THUDM weights."""
|
|
from argparse import Namespace
|
|
from array import array
|
|
from typing import Dict, Iterable, List, Mapping, Optional, Tuple, TypedDict
|
|
|
|
import torch
|
|
from PIL import Image
|
|
from torch import nn
|
|
from torch.nn import LayerNorm
|
|
|
|
from vllm.attention import Attention, AttentionMetadata
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
|
from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, DummyData,
|
|
InputContext, token_inputs)
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.activation import SiluAndMul
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.glm4_vision_encoder import EVA2CLIPModel
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import MultiModalData, MultiModalKwargs
|
|
from vllm.multimodal.utils import cached_get_tokenizer
|
|
from vllm.sequence import (VLLM_TOKEN_ID_ARRAY_TYPE, IntermediateTensors,
|
|
SequenceData)
|
|
from vllm.transformers_utils.configs import ChatGLMConfig
|
|
|
|
from .interfaces import SupportsLoRA, SupportsMultiModal, SupportsPP
|
|
from .utils import (is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory, make_layers,
|
|
maybe_prefix)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
def calculate_image_placeholder(vision_config):
|
|
return (vision_config["image_size"] // vision_config["patch_size"] // 2)**2
|
|
|
|
|
|
def mm_input_mapper_for_glmv(
|
|
ctx: InputContext,
|
|
data: MultiModalData[object],
|
|
) -> Dict:
|
|
model_config = ctx.model_config
|
|
tokenizer = cached_get_tokenizer(
|
|
model_config.tokenizer,
|
|
trust_remote_code=model_config.trust_remote_code)
|
|
if tokenizer is None:
|
|
raise RuntimeError("No HuggingFace processor is available "
|
|
"to process the image object")
|
|
try:
|
|
raw_batch_data = tokenizer.apply_chat_template(
|
|
conversation=[{
|
|
"role": "user",
|
|
"image": data
|
|
}],
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_tensors="pt",
|
|
return_dict=True).data
|
|
except Exception:
|
|
logger.error("Failed to process image (%s)", data)
|
|
raise
|
|
pixel_values = raw_batch_data['images']
|
|
|
|
return MultiModalKwargs({'pixel_values': pixel_values})
|
|
|
|
|
|
def merge_glm_vision_embeddings(
|
|
input_ids: torch.Tensor,
|
|
inputs_embeds: torch.Tensor,
|
|
vision_embeddings: torch.Tensor,
|
|
boi_token_id: int,
|
|
eoi_token_id: int,
|
|
) -> torch.Tensor:
|
|
|
|
boi_positions = (input_ids == boi_token_id).nonzero(as_tuple=True)[0]
|
|
eoi_positions = (input_ids == eoi_token_id).nonzero(as_tuple=True)[0]
|
|
|
|
mask = torch.zeros_like(input_ids, dtype=torch.bool)
|
|
|
|
for boi_pos, eoi_pos in zip(boi_positions, eoi_positions):
|
|
assert boi_pos < eoi_pos
|
|
mask[boi_pos:eoi_pos + 1] = True
|
|
inputs_embeds[mask] = vision_embeddings.view(-1,
|
|
vision_embeddings.shape[-1])
|
|
return inputs_embeds
|
|
|
|
|
|
class GLMImagePixelInputs(TypedDict):
|
|
pixel_values: torch.Tensor
|
|
"""Shape: `(batch_size, num_channels, height, width)`"""
|
|
|
|
|
|
def get_max_glmv_image_tokens(ctx: InputContext):
|
|
hf_config = ctx.get_hf_config(ChatGLMConfig)
|
|
|
|
vision_config = getattr(hf_config, 'vision_config', None)
|
|
if vision_config is None:
|
|
return 1
|
|
elif isinstance(vision_config, dict):
|
|
return calculate_image_placeholder(vision_config)
|
|
|
|
msg = f"Unsupported vision config: {type(vision_config)}"
|
|
raise NotImplementedError(msg)
|
|
|
|
|
|
def dummy_data_for_glmv(ctx: InputContext, seq_len: int,
|
|
mm_counts: Mapping[str, int]) -> DummyData:
|
|
hf_config = ctx.get_hf_config(ChatGLMConfig)
|
|
vision_config = getattr(hf_config, 'vision_config', None)
|
|
|
|
if vision_config is None:
|
|
token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE, [0] * seq_len)
|
|
seq_data = SequenceData(token_ids)
|
|
return DummyData(seq_data, None)
|
|
elif isinstance(vision_config, dict):
|
|
image_size = vision_config["image_size"]
|
|
image_placeholder_length = calculate_image_placeholder(vision_config)
|
|
token_ids = array(VLLM_TOKEN_ID_ARRAY_TYPE, [hf_config.boi_token_id] +
|
|
[0] * image_placeholder_length +
|
|
[hf_config.eoi_token_id])
|
|
token_ids += array(VLLM_TOKEN_ID_ARRAY_TYPE,
|
|
[0] * (seq_len - image_placeholder_length - 2))
|
|
seq_data = SequenceData(token_ids)
|
|
|
|
mm_data = {
|
|
"image": Image.new("RGB", (image_size, image_size), color=0)
|
|
}
|
|
|
|
return DummyData(seq_data, mm_data)
|
|
|
|
msg = f"Unsupported vision config: {type(vision_config)}"
|
|
raise NotImplementedError(msg)
|
|
|
|
|
|
def find_all_positions(input_ids: List[int], target: int) -> List[int]:
|
|
return [index for index, value in enumerate(input_ids) if value == target]
|
|
|
|
|
|
def input_processor_for_glmv(ctx: InputContext, inputs: DecoderOnlyInputs):
|
|
multi_modal_data = inputs.get("multi_modal_data")
|
|
if multi_modal_data is None or "image" not in multi_modal_data:
|
|
return inputs
|
|
|
|
hf_config = ctx.get_hf_config(ChatGLMConfig)
|
|
vision_config = getattr(hf_config, 'vision_config', None)
|
|
|
|
if vision_config is None:
|
|
return inputs
|
|
elif isinstance(vision_config, dict):
|
|
image_placeholder_length = calculate_image_placeholder(vision_config)
|
|
else:
|
|
msg = f"Unsupported vision config: {type(vision_config)}"
|
|
raise NotImplementedError(msg)
|
|
|
|
input_ids = inputs["prompt_token_ids"]
|
|
|
|
tokenizer = cached_get_tokenizer(
|
|
ctx.model_config.model,
|
|
trust_remote_code=ctx.model_config.trust_remote_code)
|
|
|
|
try:
|
|
raw_batch_data = tokenizer.apply_chat_template(
|
|
conversation=[{
|
|
"role": "user",
|
|
"image": multi_modal_data["image"],
|
|
"content": inputs['prompt'],
|
|
}],
|
|
add_generation_prompt=True,
|
|
tokenize=True,
|
|
return_tensors="pt",
|
|
return_dict=True,
|
|
).data
|
|
except Exception:
|
|
logger.error("Failed to process content (%s)", inputs['prompt'])
|
|
raise
|
|
input_ids = raw_batch_data['input_ids'][0].tolist()
|
|
|
|
boi_token_id = hf_config.boi_token_id
|
|
eoi_token_id = hf_config.eoi_token_id
|
|
boi_positions = find_all_positions(input_ids, boi_token_id)
|
|
eoi_positions = find_all_positions(input_ids, eoi_token_id)
|
|
|
|
assert len(boi_positions) == len(eoi_positions)
|
|
|
|
new_input_ids = []
|
|
final_processed_position = 0
|
|
final_processed_position = 0
|
|
|
|
for boi_position, eoi_position in zip(boi_positions, eoi_positions):
|
|
assert boi_position < eoi_position
|
|
new_input_ids.extend(input_ids[final_processed_position:boi_position +
|
|
1])
|
|
new_input_ids.extend([input_ids[boi_position + 1]] *
|
|
image_placeholder_length)
|
|
final_processed_position = eoi_position
|
|
|
|
new_input_ids.extend(input_ids[final_processed_position:])
|
|
|
|
prompt = inputs.get("prompt")
|
|
if prompt is None:
|
|
prompt = tokenizer.decode(new_input_ids)
|
|
|
|
return token_inputs(
|
|
prompt_token_ids=new_input_ids,
|
|
prompt=prompt,
|
|
multi_modal_data=multi_modal_data,
|
|
)
|
|
|
|
|
|
class GLMAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: ChatGLMConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = config.num_attention_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.multi_query_attention = config.multi_query_attention
|
|
self.total_num_kv_heads = (config.multi_query_group_num
|
|
if config.multi_query_attention else
|
|
config.num_attention_heads)
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = config.hidden_size // self.total_num_heads
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
self.query_key_value = QKVParallelLinear(
|
|
self.hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=config.add_bias_linear or config.add_qkv_bias,
|
|
quant_config=quant_config,
|
|
)
|
|
self.dense = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
config.hidden_size,
|
|
bias=config.add_bias_linear,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
# https://huggingface.co/THUDM/chatglm3-6b-32k/blob/e210410255278dd9d74463cf396ba559c0ef801c/modeling_chatglm.py#L141
|
|
rope_ratio = getattr(config, "rope_ratio", 1.0)
|
|
max_positions = getattr(config, "seq_length", 8192)
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim // 2,
|
|
max_position=max_positions,
|
|
base=10000 * rope_ratio,
|
|
is_neox_style=False,
|
|
)
|
|
self.attn = Attention(self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.query_key_value(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(position_ids, q, k)
|
|
context_layer = self.attn(
|
|
q,
|
|
k,
|
|
v,
|
|
kv_cache,
|
|
attn_metadata,
|
|
)
|
|
attn_output, _ = self.dense(context_layer)
|
|
return attn_output
|
|
|
|
|
|
class GLMMLP(nn.Module):
|
|
"""MLP.
|
|
|
|
MLP will take the input with h hidden state, project it to 4*h
|
|
hidden dimension, perform nonlinear transformation, and project the
|
|
state back into h hidden dimension.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: ChatGLMConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.add_bias = config.add_bias_linear
|
|
|
|
# Project to 4h.
|
|
self.dense_h_to_4h = MergedColumnParallelLinear(
|
|
config.hidden_size,
|
|
[config.ffn_hidden_size] * 2,
|
|
bias=config.add_bias_linear,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
self.activation_func = SiluAndMul()
|
|
|
|
# Project back to h.
|
|
self.dense_4h_to_h = RowParallelLinear(
|
|
config.ffn_hidden_size,
|
|
config.hidden_size,
|
|
bias=config.add_bias_linear,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
def forward(self, hidden_states):
|
|
# [s, b, 4hp]
|
|
intermediate_parallel, _ = self.dense_h_to_4h(hidden_states)
|
|
intermediate_parallel = self.activation_func(intermediate_parallel)
|
|
# [s, b, h]
|
|
output, _ = self.dense_4h_to_h(intermediate_parallel)
|
|
return output
|
|
|
|
|
|
class GLMBlock(nn.Module):
|
|
"""A single transformer layer.
|
|
|
|
Transformer layer takes input with size [s, b, h] and returns an
|
|
output of the same size.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: ChatGLMConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.apply_residual_connection_post_layernorm = (
|
|
config.apply_residual_connection_post_layernorm)
|
|
|
|
self.fp32_residual_connection = config.fp32_residual_connection
|
|
|
|
layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
|
|
# Layernorm on the input data.
|
|
self.input_layernorm = layer_norm_func(config.hidden_size,
|
|
eps=config.layernorm_epsilon)
|
|
|
|
# Self attention.
|
|
self.self_attention = GLMAttention(config, cache_config, quant_config)
|
|
self.hidden_dropout = config.hidden_dropout
|
|
|
|
# Layernorm on the attention output
|
|
self.post_attention_layernorm = layer_norm_func(
|
|
config.hidden_size, eps=config.layernorm_epsilon)
|
|
|
|
# MLP
|
|
self.mlp = GLMMLP(config, quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
# hidden_states: [num_tokens, h]
|
|
# Layer norm at the beginning of the transformer layer.
|
|
layernorm_output = self.input_layernorm(hidden_states)
|
|
# Self attention.
|
|
attention_output = self.self_attention(
|
|
hidden_states=layernorm_output,
|
|
position_ids=position_ids,
|
|
kv_cache=kv_cache,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
|
|
# Residual connection.
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = hidden_states
|
|
|
|
layernorm_input = residual + attention_output
|
|
|
|
# Layer norm post the self attention.
|
|
layernorm_output = self.post_attention_layernorm(layernorm_input)
|
|
|
|
# Second residual connection.
|
|
if self.apply_residual_connection_post_layernorm:
|
|
residual = layernorm_output
|
|
else:
|
|
residual = layernorm_input
|
|
|
|
output = self.mlp(layernorm_output) + residual
|
|
|
|
return output
|
|
|
|
|
|
class GLMTransformer(nn.Module):
|
|
"""Transformer class."""
|
|
|
|
def __init__(
|
|
self,
|
|
config: ChatGLMConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.post_layer_norm = config.post_layer_norm
|
|
|
|
# Number of layers.
|
|
self.num_layers = config.num_layers
|
|
|
|
# Transformer layers.
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
self.num_layers,
|
|
lambda prefix: GLMBlock(config, cache_config, quant_config),
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
|
|
if self.post_layer_norm:
|
|
layer_norm_func = RMSNorm if config.rmsnorm else LayerNorm
|
|
# Final layer norm before output.
|
|
self.final_layernorm = layer_norm_func(
|
|
config.hidden_size, eps=config.layernorm_epsilon)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(["hidden_states"],
|
|
config.hidden_size))
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
for i in range(self.start_layer, self.end_layer):
|
|
layer = self.layers[i]
|
|
hidden_states = layer(
|
|
hidden_states=hidden_states,
|
|
position_ids=position_ids,
|
|
kv_cache=kv_caches[i - self.start_layer],
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
# Final layer norm.
|
|
if get_pp_group().is_last_rank and self.post_layer_norm:
|
|
hidden_states = self.final_layernorm(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class ChatGLMModel(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.config = config
|
|
|
|
self.embedding = VocabParallelEmbedding(config.padded_vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config)
|
|
|
|
self.num_layers = config.num_layers
|
|
self.multi_query_group_num = config.multi_query_group_num
|
|
self.kv_channels = config.kv_channels
|
|
self.encoder = GLMTransformer(config, cache_config, quant_config)
|
|
|
|
self.output_layer = ParallelLMHead(config.padded_vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config)
|
|
|
|
vision_config_flag = getattr(config, 'vision_config', None)
|
|
if vision_config_flag is not None:
|
|
self.vision_config = Namespace(**config.vision_config)
|
|
self.vision = EVA2CLIPModel(self.config, quant_config)
|
|
else:
|
|
self.vision = None
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.encoder.make_empty_intermediate_tensors)
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object) -> GLMImagePixelInputs:
|
|
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
if pixel_values is not None and self.vision is not None:
|
|
if isinstance(pixel_values, torch.Tensor):
|
|
if pixel_values.ndim > 2:
|
|
pixel_values = torch.concat(list(pixel_values))
|
|
elif isinstance(pixel_values, list):
|
|
return torch.concat(pixel_values)
|
|
else:
|
|
raise TypeError("""pixel_values must be a torch.Tensor
|
|
or a list of torch.Tensor
|
|
""")
|
|
return GLMImagePixelInputs(pixel_values=pixel_values)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
**kwargs: object,
|
|
) -> torch.Tensor:
|
|
if intermediate_tensors is None:
|
|
inputs_embeds = self.embedding(input_ids)
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
|
|
if image_input["pixel_values"] is not None:
|
|
pixel_values = image_input["pixel_values"].to(
|
|
dtype=inputs_embeds.dtype)
|
|
image_embeds = self.vision(pixel_values)
|
|
|
|
boi_token_id = self.config.boi_token_id
|
|
eoi_token_id = self.config.eoi_token_id
|
|
|
|
inputs_embeds = merge_glm_vision_embeddings(
|
|
input_ids=input_ids,
|
|
inputs_embeds=inputs_embeds,
|
|
vision_embeddings=image_embeds,
|
|
boi_token_id=boi_token_id,
|
|
eoi_token_id=eoi_token_id)
|
|
else:
|
|
inputs_embeds = intermediate_tensors["hidden_states"]
|
|
|
|
# Run encoder.
|
|
hidden_states = self.encoder(
|
|
hidden_states=inputs_embeds,
|
|
position_ids=positions,
|
|
kv_caches=kv_caches,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({"hidden_states": hidden_states})
|
|
return hidden_states
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_image_input_mapper(mm_input_mapper_for_glmv)
|
|
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_glmv_image_tokens)
|
|
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_glmv)
|
|
@INPUT_REGISTRY.register_input_processor(input_processor_for_glmv)
|
|
class ChatGLMForCausalLM(nn.Module, SupportsLoRA, SupportsPP,
|
|
SupportsMultiModal):
|
|
packed_modules_mapping = {
|
|
"query_key_value": ["query_key_value"],
|
|
"dense_h_to_4h": ["dense_h_to_4h"]
|
|
}
|
|
# LoRA specific attributes
|
|
supported_lora_modules = [
|
|
"query_key_value",
|
|
"dense",
|
|
"dense_h_to_4h",
|
|
"dense_4h_to_h",
|
|
]
|
|
embedding_modules = {}
|
|
embedding_padding_modules = []
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
lora_config = vllm_config.lora_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.config = config
|
|
self.lora_config = lora_config
|
|
self.multimodal_config = multimodal_config
|
|
|
|
self.quant_config = quant_config
|
|
self.max_position_embeddings = getattr(config, "max_sequence_length",
|
|
8192)
|
|
self.transformer = ChatGLMModel(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(
|
|
prefix, "transformer"))
|
|
if self.config.tie_word_embeddings:
|
|
self.transformer.output_layer.weight = (
|
|
self.transformer.embedding.weight)
|
|
self.lm_head = self.transformer.output_layer
|
|
self.logits_processor = LogitsProcessor(config.padded_vocab_size)
|
|
self.sampler = get_sampler()
|
|
|
|
def forward(self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
**kwargs) -> torch.Tensor:
|
|
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
|
attn_metadata, intermediate_tensors,
|
|
**kwargs)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
# Merge two ColumnParallelLinear into one MergedColumnParallelLinear
|
|
merged_weights_dict: Dict[str, Dict[str, Optional[torch.Tensor]]] = {
|
|
"transformer.vision.linear_proj.merged_proj.weight": {
|
|
"transformer.vision.linear_proj.gate_proj.weight": None,
|
|
"transformer.vision.linear_proj.dense_h_to_4h.weight": None,
|
|
}
|
|
}
|
|
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
for name, loaded_weight in weights:
|
|
is_weight_to_be_merge = False
|
|
for _, merged_weight_dict in merged_weights_dict.items():
|
|
if name in merged_weight_dict:
|
|
assert merged_weight_dict[name] is None
|
|
merged_weight_dict[name] = loaded_weight
|
|
is_weight_to_be_merge = True
|
|
if is_weight_to_be_merge:
|
|
continue
|
|
if "rotary_pos_emb.inv_freq" in name:
|
|
continue
|
|
if "word_embeddings" in name:
|
|
name = name.replace(".word_embeddings", "")
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
|
|
for combined_name, merged_weight_dict in merged_weights_dict.items():
|
|
if combined_name in params_dict:
|
|
param = params_dict[combined_name]
|
|
combined_weight = torch.cat(list(merged_weight_dict.values()),
|
|
dim=0)
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, combined_weight)
|