Co-authored-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com> Co-authored-by: Lucas Wilkinson <lwilkinson@neuralmagic.com>
558 lines
21 KiB
Plaintext
558 lines
21 KiB
Plaintext
// clang-format will break include orders
|
|
// clang-format off
|
|
#include <cudaTypedefs.h>
|
|
|
|
#if defined CUDA_VERSION && CUDA_VERSION >= 12000
|
|
|
|
#include <torch/all.h>
|
|
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
|
|
#include <iostream>
|
|
#include <sstream>
|
|
#include <vector>
|
|
|
|
#include "cutlass/cutlass.h"
|
|
|
|
#include "cute/tensor.hpp"
|
|
#include "cute/atom/mma_atom.hpp"
|
|
#include "cutlass/numeric_types.h"
|
|
|
|
#include "cutlass/util/device_memory.h"
|
|
|
|
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
|
#include "cutlass/gemm/kernel/gemm_universal.hpp"
|
|
#include "cutlass/epilogue/collective/collective_builder.hpp"
|
|
#include "cutlass/gemm/collective/collective_builder.hpp"
|
|
|
|
#include "broadcast_load_epilogue_c3x.hpp"
|
|
#include "common.hpp"
|
|
// clang-format on
|
|
|
|
using namespace cute;
|
|
|
|
/*
|
|
This file defines quantized GEMM operations using the CUTLASS 3.x API, for
|
|
NVIDIA GPUs with sm90a (Hopper) or later.
|
|
|
|
Epilogue functions can be defined to post-process the output before it is
|
|
written to GPU memory.
|
|
Epilogues must contain a public type named EVTCompute of type Sm90EVT,
|
|
as well as a static prepare_args function that constructs an
|
|
EVTCompute::Arguments struct.
|
|
*/
|
|
|
|
namespace {
|
|
|
|
// A wrapper for the GEMM kernel that is used to guard against compilation on
|
|
// architectures that will never use the kernel. The purpose of this is to
|
|
// reduce the size of the compiled binary.
|
|
// __CUDA_ARCH__ is not defined in host code, so this lets us smuggle the ifdef
|
|
// into code that will be executed on the device where it is defined.
|
|
template <typename Kernel>
|
|
struct enable_sm90_or_later : Kernel {
|
|
template <typename... Args>
|
|
CUTLASS_DEVICE void operator()(Args&&... args) {
|
|
#if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 900
|
|
Kernel::operator()(std::forward<Args>(args)...);
|
|
#endif
|
|
}
|
|
};
|
|
|
|
/*
|
|
* This class provides the common ScaleA and ScaleB descriptors for the
|
|
* ScaledEpilogue and ScaledEpilogueBias classes.
|
|
*/
|
|
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
|
|
struct ScaledEpilogueBase {
|
|
protected:
|
|
using Accum = cutlass::epilogue::fusion::Sm90AccFetch;
|
|
|
|
using ScaleA = cutlass::epilogue::fusion::Sm90ColOrScalarBroadcast<
|
|
0 /*Stages*/, typename EpilogueDescriptor::TileShape, float,
|
|
Stride<Int<1>, Int<0>, Int<0>>>;
|
|
|
|
using ScaleBDescriptor =
|
|
cutlass::epilogue::collective::detail::RowBroadcastDescriptor<
|
|
EpilogueDescriptor, float>;
|
|
|
|
using ScaleB = cutlass::epilogue::fusion::Sm90RowOrScalarBroadcast<
|
|
ScaleBDescriptor::Stages, typename EpilogueDescriptor::TileShape,
|
|
typename ScaleBDescriptor::Element, Stride<Int<0>, Int<1>, Int<0>>>;
|
|
};
|
|
|
|
/*
|
|
This epilogue function defines a quantized GEMM operation similar to
|
|
torch.scaled_mm_.
|
|
|
|
A and B may be both either int8 or fp8_e4m3. A can be
|
|
quantized per-tensor or per-row. B can be quantized per-tensor or per-column.
|
|
Any combination of per-tensor and per-row or column is supported.
|
|
A and B must have symmetric quantization (zero point == 0).
|
|
|
|
So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
|
|
scales are applied elementwise with numpy-style broadcasting.
|
|
|
|
ScaleA and ScaleB define the epilogue functions that apply the scales for
|
|
the A and B operands respectively. These scales may be either per-tensor or
|
|
per row or column.
|
|
*/
|
|
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
|
|
struct ScaledEpilogue
|
|
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
|
|
private:
|
|
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
|
|
using Accum = typename SUPER::Accum;
|
|
using ScaleA = typename SUPER::ScaleA;
|
|
using ScaleB = typename SUPER::ScaleB;
|
|
|
|
using Compute0 = cutlass::epilogue::fusion::Sm90Compute<
|
|
cutlass::multiplies, float, float,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
using EVTCompute0 =
|
|
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
|
|
|
|
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
|
|
cutlass::multiplies, ElementD, float,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
public:
|
|
using EVTCompute =
|
|
cutlass::epilogue::fusion::Sm90EVT<Compute1, ScaleA, EVTCompute0>;
|
|
using ArgumentType = typename EVTCompute::Arguments;
|
|
|
|
static ArgumentType prepare_args(torch::Tensor const& a_scales,
|
|
torch::Tensor const& b_scales) {
|
|
using ScaleA_Args = typename ScaleA::Arguments;
|
|
using ScaleB_Args = typename ScaleB::Arguments;
|
|
|
|
ScaleA_Args a_args{a_scales.data_ptr<float>(), a_scales.numel() != 1, {}};
|
|
ScaleB_Args b_args{b_scales.data_ptr<float>(), b_scales.numel() != 1, {}};
|
|
|
|
return ArgumentType{a_args, {b_args}};
|
|
}
|
|
};
|
|
|
|
template <typename ElementAcc, typename ElementD, typename EpilogueDescriptor>
|
|
struct ScaledEpilogueBias
|
|
: private ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor> {
|
|
private:
|
|
using SUPER = ScaledEpilogueBase<ElementAcc, ElementD, EpilogueDescriptor>;
|
|
using Accum = typename SUPER::Accum;
|
|
using ScaleA = typename SUPER::ScaleA;
|
|
using ScaleB = typename SUPER::ScaleB;
|
|
|
|
using Compute0 = cutlass::epilogue::fusion::Sm90Compute<
|
|
cutlass::multiplies, ElementD, ElementD,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
using EVTCompute0 =
|
|
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
|
|
|
|
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
|
|
cutlass::multiply_add, ElementD, ElementD,
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
using BiasDescriptor =
|
|
cutlass::epilogue::collective::detail::RowBroadcastDescriptor<
|
|
EpilogueDescriptor, ElementD>;
|
|
|
|
using Bias = cutlass::epilogue::fusion::Sm90RowBroadcast<
|
|
BiasDescriptor::Stages, typename EpilogueDescriptor::TileShape, ElementD,
|
|
Stride<Int<0>, Int<1>, Int<0>>, 128 / sizeof_bits_v<ElementD>, false>;
|
|
|
|
public:
|
|
using EVTCompute =
|
|
cutlass::epilogue::fusion::Sm90EVT<Compute1, ScaleA, EVTCompute0, Bias>;
|
|
using ArgumentType = typename EVTCompute::Arguments;
|
|
|
|
static ArgumentType prepare_args(torch::Tensor const& a_scales,
|
|
torch::Tensor const& b_scales,
|
|
torch::Tensor const& bias) {
|
|
using ScaleA_Args = typename ScaleA::Arguments;
|
|
using ScaleB_Args = typename ScaleB::Arguments;
|
|
using Bias_Args = typename Bias::Arguments;
|
|
|
|
ScaleA_Args a_args{a_scales.data_ptr<float>(), a_scales.numel() != 1, {}};
|
|
ScaleB_Args b_args{b_scales.data_ptr<float>(), b_scales.numel() != 1, {}};
|
|
Bias_Args bias_args{static_cast<ElementD*>(bias.data_ptr())};
|
|
|
|
return ArgumentType{a_args, {b_args}, bias_args};
|
|
}
|
|
};
|
|
|
|
template <typename ElementAB_, typename ElementD_,
|
|
template <typename, typename, typename> typename Epilogue_,
|
|
typename TileShape, typename ClusterShape, typename KernelSchedule,
|
|
typename EpilogueSchedule>
|
|
struct cutlass_3x_gemm {
|
|
using ElementAB = ElementAB_;
|
|
using ElementD = ElementD_;
|
|
using ElementAcc =
|
|
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
|
|
float>::type;
|
|
|
|
using EpilogueDescriptor =
|
|
cutlass::epilogue::collective::detail::EpilogueDescriptor<
|
|
TileShape, cutlass::epilogue::collective::EpilogueTileAuto, ElementD,
|
|
ElementD, EpilogueSchedule>;
|
|
|
|
using Epilogue = Epilogue_<ElementAcc, ElementD, EpilogueDescriptor>;
|
|
|
|
using StrideD = Stride<int64_t, Int<1>, Int<0>>;
|
|
using ElementC = void;
|
|
using StrideC = StrideD;
|
|
|
|
using EVTCompute = typename Epilogue::EVTCompute;
|
|
|
|
using CollectiveEpilogue =
|
|
typename cutlass::epilogue::collective::CollectiveBuilder<
|
|
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
|
|
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
|
|
ElementAcc, float, ElementC, StrideC, 4, ElementD, StrideD, 4,
|
|
EpilogueSchedule, EVTCompute>::CollectiveOp;
|
|
|
|
static constexpr size_t CEStorageSize =
|
|
sizeof(typename CollectiveEpilogue::SharedStorage);
|
|
using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
|
|
static_cast<int>(CEStorageSize)>;
|
|
|
|
// clang-format off
|
|
using CollectiveMainloop =
|
|
typename cutlass::gemm::collective::CollectiveBuilder<
|
|
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
|
ElementAB, cutlass::layout::RowMajor, 16,
|
|
ElementAB, cutlass::layout::ColumnMajor, 16,
|
|
ElementAcc, TileShape, ClusterShape,
|
|
Stages,
|
|
KernelSchedule>::CollectiveOp;
|
|
// clang-format on
|
|
|
|
using KernelType = enable_sm90_or_later<cutlass::gemm::kernel::GemmUniversal<
|
|
cute::Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue,
|
|
cutlass::gemm::PersistentScheduler>>;
|
|
|
|
struct GemmKernel : public KernelType {};
|
|
};
|
|
|
|
template <typename Gemm, typename... EpilogueArgs>
|
|
void cutlass_gemm_caller(torch::Tensor& out, torch::Tensor const& a,
|
|
torch::Tensor const& b,
|
|
EpilogueArgs&&... epilogue_params) {
|
|
using ElementAB = typename Gemm::ElementAB;
|
|
using ElementD = typename Gemm::ElementD;
|
|
|
|
int32_t m = a.size(0);
|
|
int32_t n = b.size(1);
|
|
int32_t k = a.size(1);
|
|
|
|
int64_t lda = a.stride(0);
|
|
int64_t ldb = b.stride(1);
|
|
int64_t ldc = out.stride(0);
|
|
|
|
using StrideA = Stride<int64_t, Int<1>, Int<0>>;
|
|
using StrideB = Stride<int64_t, Int<1>, Int<0>>;
|
|
using StrideC = typename Gemm::StrideC;
|
|
|
|
StrideA a_stride{lda, Int<1>{}, Int<0>{}};
|
|
StrideB b_stride{ldb, Int<1>{}, Int<0>{}};
|
|
StrideC c_stride{ldc, Int<1>{}, Int<0>{}};
|
|
|
|
using GemmKernel = typename Gemm::GemmKernel;
|
|
typename GemmKernel::ProblemShape prob_shape{m, n, k, 1};
|
|
|
|
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
|
|
auto b_ptr = static_cast<ElementAB*>(b.data_ptr());
|
|
typename GemmKernel::MainloopArguments mainloop_args{a_ptr, a_stride, b_ptr,
|
|
b_stride};
|
|
|
|
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
|
|
typename GemmKernel::EpilogueArguments epilogue_args{
|
|
Gemm::Epilogue::prepare_args(
|
|
std::forward<EpilogueArgs>(epilogue_params)...),
|
|
c_ptr, c_stride, c_ptr, c_stride};
|
|
|
|
typename GemmKernel::Arguments args{cutlass::gemm::GemmUniversalMode::kGemm,
|
|
prob_shape, mainloop_args, epilogue_args};
|
|
|
|
// Launch the CUTLASS GEMM kernel.
|
|
using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
|
GemmOp gemm_op;
|
|
CUTLASS_CHECK(gemm_op.can_implement(args));
|
|
|
|
size_t workspace_size = gemm_op.get_workspace_size(args);
|
|
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
|
|
|
|
auto stream = at::cuda::getCurrentCUDAStream(a.get_device());
|
|
|
|
cutlass::Status status = gemm_op.run(args, workspace.get(), stream);
|
|
CUTLASS_CHECK(status);
|
|
}
|
|
|
|
template <typename InType, typename OutType,
|
|
template <typename, typename, typename> typename Epilogue>
|
|
struct sm90_fp8_config_default {
|
|
// M in (128, inf)
|
|
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
|
using KernelSchedule =
|
|
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
|
|
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
|
|
using TileShape = Shape<_128, _128, _128>;
|
|
using ClusterShape = Shape<_2, _1, _1>;
|
|
using Cutlass3xGemm =
|
|
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
|
KernelSchedule, EpilogueSchedule>;
|
|
};
|
|
|
|
template <typename InType, typename OutType,
|
|
template <typename, typename, typename> typename Epilogue>
|
|
struct sm90_fp8_config_M128 {
|
|
// M in (64, 128]
|
|
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
|
using KernelSchedule =
|
|
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
|
|
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
|
|
using TileShape = Shape<_64, _128, _128>;
|
|
using ClusterShape = Shape<_2, _1, _1>;
|
|
using Cutlass3xGemm =
|
|
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
|
KernelSchedule, EpilogueSchedule>;
|
|
};
|
|
|
|
template <typename InType, typename OutType,
|
|
template <typename, typename, typename> typename Epilogue>
|
|
struct sm90_fp8_config_M64 {
|
|
// M in [1, 64]
|
|
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
|
using KernelSchedule =
|
|
cutlass::gemm::KernelTmaWarpSpecializedPingpongFP8FastAccum;
|
|
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
|
|
using TileShape = Shape<_64, _64, _128>;
|
|
using ClusterShape = Shape<_1, _8, _1>;
|
|
|
|
using Cutlass3xGemm =
|
|
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
|
KernelSchedule, EpilogueSchedule>;
|
|
};
|
|
|
|
template <typename InType, typename OutType,
|
|
template <typename, typename, typename> typename Epilogue>
|
|
struct sm90_int8_config_default {
|
|
// For M > 128 and any N
|
|
static_assert(std::is_same<InType, int8_t>());
|
|
using KernelSchedule =
|
|
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
|
|
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
|
|
using TileShape = Shape<_128, _128, _128>;
|
|
using ClusterShape = Shape<_2, _1, _1>;
|
|
using Cutlass3xGemm =
|
|
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
|
KernelSchedule, EpilogueSchedule>;
|
|
};
|
|
|
|
template <typename InType, typename OutType,
|
|
template <typename, typename, typename> typename Epilogue>
|
|
struct sm90_int8_config_M128 {
|
|
// For M in (64, 128] and any N
|
|
static_assert(std::is_same<InType, int8_t>());
|
|
using KernelSchedule =
|
|
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
|
|
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
|
|
using TileShape = Shape<_64, _128, _128>;
|
|
using ClusterShape = Shape<_2, _1, _1>;
|
|
using Cutlass3xGemm =
|
|
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
|
KernelSchedule, EpilogueSchedule>;
|
|
};
|
|
|
|
template <typename InType, typename OutType,
|
|
template <typename, typename, typename> typename Epilogue>
|
|
struct sm90_int8_config_M64 {
|
|
// For M in (32, 64] and any N
|
|
static_assert(std::is_same<InType, int8_t>());
|
|
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
|
|
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
|
|
using TileShape = Shape<_64, _64, _256>;
|
|
using ClusterShape = Shape<_1, _1, _1>;
|
|
using Cutlass3xGemm =
|
|
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
|
KernelSchedule, EpilogueSchedule>;
|
|
};
|
|
|
|
template <typename InType, typename OutType,
|
|
template <typename, typename, typename> typename Epilogue>
|
|
struct sm90_int8_config_M32_NBig {
|
|
// For M in [1, 32] and N >= 8192
|
|
static_assert(std::is_same<InType, int8_t>());
|
|
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
|
|
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
|
|
using TileShape = Shape<_64, _128, _256>;
|
|
using ClusterShape = Shape<_1, _4, _1>;
|
|
using Cutlass3xGemm =
|
|
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
|
KernelSchedule, EpilogueSchedule>;
|
|
};
|
|
|
|
template <typename InType, typename OutType,
|
|
template <typename, typename, typename> typename Epilogue>
|
|
struct sm90_int8_config_M32_NSmall {
|
|
// For M in [1, 32] and N < 8192
|
|
static_assert(std::is_same<InType, int8_t>());
|
|
using KernelSchedule = typename cutlass::gemm::KernelTmaWarpSpecialized;
|
|
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
|
|
using TileShape = Shape<_64, _64, _256>;
|
|
using ClusterShape = Shape<_1, _8, _1>;
|
|
using Cutlass3xGemm =
|
|
cutlass_3x_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
|
KernelSchedule, EpilogueSchedule>;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
template <typename InType, typename OutType,
|
|
template <typename, typename, typename> typename Epilogue,
|
|
typename... EpilogueArgs>
|
|
void cutlass_gemm_sm90_fp8_dispatch(torch::Tensor& out, torch::Tensor const& a,
|
|
torch::Tensor const& b,
|
|
EpilogueArgs&&... args) {
|
|
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
|
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
|
|
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
|
|
|
|
using Cutlass3xGemmDefault =
|
|
typename sm90_fp8_config_default<InType, OutType,
|
|
Epilogue>::Cutlass3xGemm;
|
|
using Cutlass3xGemmM64 =
|
|
typename sm90_fp8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
|
|
using Cutlass3xGemmM128 =
|
|
typename sm90_fp8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
|
|
|
|
uint32_t const m = a.size(0);
|
|
uint32_t const mp2 =
|
|
std::max(static_cast<uint32_t>(64), next_pow_2(m)); // next power of 2
|
|
|
|
if (mp2 <= 64) {
|
|
// m in [1, 64]
|
|
return cutlass_gemm_caller<Cutlass3xGemmM64>(
|
|
out, a, b, std::forward<EpilogueArgs>(args)...);
|
|
} else if (mp2 <= 128) {
|
|
// m in (64, 128]
|
|
return cutlass_gemm_caller<Cutlass3xGemmM128>(
|
|
out, a, b, std::forward<EpilogueArgs>(args)...);
|
|
} else {
|
|
// m in (128, inf)
|
|
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
|
|
out, a, b, std::forward<EpilogueArgs>(args)...);
|
|
}
|
|
}
|
|
|
|
template <typename InType, typename OutType,
|
|
template <typename, typename, typename> typename Epilogue,
|
|
typename... EpilogueArgs>
|
|
void cutlass_gemm_sm90_int8_dispatch(torch::Tensor& out, torch::Tensor const& a,
|
|
torch::Tensor const& b,
|
|
EpilogueArgs&&... args) {
|
|
static_assert(std::is_same<InType, int8_t>());
|
|
TORCH_CHECK(a.dtype() == torch::kInt8);
|
|
TORCH_CHECK(b.dtype() == torch::kInt8);
|
|
|
|
using Cutlass3xGemmDefault =
|
|
typename sm90_int8_config_default<InType, OutType,
|
|
Epilogue>::Cutlass3xGemm;
|
|
using Cutlass3xGemmM128 =
|
|
typename sm90_int8_config_M128<InType, OutType, Epilogue>::Cutlass3xGemm;
|
|
using Cutlass3xGemmM64 =
|
|
typename sm90_int8_config_M64<InType, OutType, Epilogue>::Cutlass3xGemm;
|
|
using Cutlass3xGemmM32NBig =
|
|
typename sm90_int8_config_M32_NBig<InType, OutType,
|
|
Epilogue>::Cutlass3xGemm;
|
|
using Cutlass3xGemmM32NSmall =
|
|
typename sm90_int8_config_M32_NSmall<InType, OutType,
|
|
Epilogue>::Cutlass3xGemm;
|
|
|
|
uint32_t const n = out.size(1);
|
|
bool const is_small_n = n < 8192;
|
|
|
|
uint32_t const m = a.size(0);
|
|
uint32_t const mp2 =
|
|
std::max(static_cast<uint32_t>(32), next_pow_2(m)); // next power of 2
|
|
|
|
if (mp2 <= 32) {
|
|
// m in [1, 32]
|
|
if (is_small_n) {
|
|
return cutlass_gemm_caller<Cutlass3xGemmM32NSmall>(
|
|
out, a, b, std::forward<EpilogueArgs>(args)...);
|
|
} else {
|
|
return cutlass_gemm_caller<Cutlass3xGemmM32NBig>(
|
|
out, a, b, std::forward<EpilogueArgs>(args)...);
|
|
}
|
|
} else if (mp2 <= 64) {
|
|
// m in (32, 64]
|
|
return cutlass_gemm_caller<Cutlass3xGemmM64>(
|
|
out, a, b, std::forward<EpilogueArgs>(args)...);
|
|
} else if (mp2 <= 128) {
|
|
// m in (64, 128]
|
|
return cutlass_gemm_caller<Cutlass3xGemmM128>(
|
|
out, a, b, std::forward<EpilogueArgs>(args)...);
|
|
} else {
|
|
// m in (128, inf)
|
|
return cutlass_gemm_caller<Cutlass3xGemmDefault>(
|
|
out, a, b, std::forward<EpilogueArgs>(args)...);
|
|
}
|
|
}
|
|
|
|
template <template <typename, typename, typename> typename Epilogue,
|
|
typename... EpilogueArgs>
|
|
void cutlass_scaled_mm_sm90_epilogue(torch::Tensor& out, torch::Tensor const& a,
|
|
torch::Tensor const& b,
|
|
EpilogueArgs&&... epilogue_args) {
|
|
if (a.dtype() == torch::kInt8) {
|
|
TORCH_CHECK(b.dtype() == torch::kInt8);
|
|
|
|
if (out.dtype() == torch::kBFloat16) {
|
|
return cutlass_gemm_sm90_int8_dispatch<int8_t, cutlass::bfloat16_t,
|
|
Epilogue>(
|
|
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
|
|
} else {
|
|
TORCH_CHECK(out.dtype() == torch::kFloat16);
|
|
return cutlass_gemm_sm90_int8_dispatch<int8_t, cutlass::half_t, Epilogue>(
|
|
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
|
|
}
|
|
} else {
|
|
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
|
|
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
|
|
|
|
if (out.dtype() == torch::kBFloat16) {
|
|
return cutlass_gemm_sm90_fp8_dispatch<cutlass::float_e4m3_t,
|
|
cutlass::bfloat16_t, Epilogue>(
|
|
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
|
|
} else {
|
|
TORCH_CHECK(out.dtype() == torch::kFloat16);
|
|
return cutlass_gemm_sm90_fp8_dispatch<cutlass::float_e4m3_t,
|
|
cutlass::half_t, Epilogue>(
|
|
out, a, b, std::forward<EpilogueArgs>(epilogue_args)...);
|
|
}
|
|
}
|
|
}
|
|
|
|
void cutlass_scaled_mm_sm90(torch::Tensor& c, torch::Tensor const& a,
|
|
torch::Tensor const& b,
|
|
torch::Tensor const& a_scales,
|
|
torch::Tensor const& b_scales,
|
|
c10::optional<torch::Tensor> const& bias) {
|
|
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
|
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
|
if (bias) {
|
|
TORCH_CHECK(bias->dtype() == c.dtype(),
|
|
"currently bias dtype must match output dtype ", c.dtype());
|
|
return cutlass_scaled_mm_sm90_epilogue<ScaledEpilogueBias>(
|
|
c, a, b, a_scales, b_scales, *bias);
|
|
} else {
|
|
return cutlass_scaled_mm_sm90_epilogue<ScaledEpilogue>(c, a, b, a_scales,
|
|
b_scales);
|
|
}
|
|
}
|
|
|
|
#endif
|