393 lines
16 KiB
Python
393 lines
16 KiB
Python
"""Attention layer with xFormers and PagedAttention."""
|
|
from dataclasses import dataclass
|
|
from typing import Dict, List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
from xformers import ops as xops
|
|
from xformers.ops.fmha.attn_bias import (AttentionBias,
|
|
BlockDiagonalCausalMask,
|
|
LowerTriangularMaskWithTensorBias)
|
|
|
|
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
|
AttentionMetadata,
|
|
AttentionMetadataPerStage)
|
|
from vllm.attention.ops.paged_attn import (PagedAttention,
|
|
PagedAttentionMetadata)
|
|
from vllm.logger import init_logger
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class XFormersBackend(AttentionBackend):
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> Type["XFormersImpl"]:
|
|
return XFormersImpl
|
|
|
|
@staticmethod
|
|
def make_metadata(*args, **kwargs) -> "XFormersMetadata":
|
|
return XFormersMetadata(*args, **kwargs)
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> Tuple[int, ...]:
|
|
return PagedAttention.get_kv_cache_shape(num_blocks, block_size,
|
|
num_kv_heads, head_size)
|
|
|
|
@staticmethod
|
|
def swap_blocks(
|
|
src_kv_cache: torch.Tensor,
|
|
dst_kv_cache: torch.Tensor,
|
|
src_to_dst: Dict[int, int],
|
|
) -> None:
|
|
PagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
|
|
|
|
@staticmethod
|
|
def copy_blocks(
|
|
kv_caches: List[torch.Tensor],
|
|
src_to_dists: Dict[int, List[int]],
|
|
) -> None:
|
|
PagedAttention.copy_blocks(kv_caches, src_to_dists)
|
|
|
|
|
|
@dataclass
|
|
class XFormersMetadata(AttentionMetadataPerStage, PagedAttentionMetadata):
|
|
"""Metadata for XFormersbackend.
|
|
|
|
NOTE: Any python object stored here is not updated when it is
|
|
cuda-graph replayed. If you have values that need to be changed
|
|
dynamically, it should be stored in tensor. The tensor has to be
|
|
updated from `CUDAGraphRunner.forward` API.
|
|
"""
|
|
# Currently, input sequences can only contain all prompts
|
|
# or all decoding. True if all sequences are prompts.
|
|
is_prompt: bool
|
|
# (batch_size,). The prompt length per sequence. None if it is a decoding.
|
|
prompt_lens: Optional[List[int]]
|
|
# prompt_lens stored as a tensor.
|
|
prompt_lens_tensor: Optional[torch.Tensor]
|
|
|
|
# NOTE(sang): Definition of context_len, subquery_len, and seqlen.
|
|
# |---------- N-1 iteration --------|
|
|
# |---------------- N iteration ---------------------|
|
|
# |- tokenA -|......................|-- newTokens ---|
|
|
# |---------- context_len ----------|
|
|
# |-------------------- seqlen ----------------------|
|
|
# |- subquery_len -|
|
|
|
|
# WARNING(sang): context_len has different definition depending on if it is
|
|
# prefill vs decoding. When it is prefill, it doesn't include new tokens.
|
|
# When it is for decoding, it includes a new token.
|
|
|
|
# Maximum subquery length in the batch.
|
|
max_subquery_len: Optional[int]
|
|
# FIXME: It is for flash attn.
|
|
# Maximum prompt length in the batch.
|
|
max_prompt_len: Optional[int]
|
|
# (batch_size + 1,). The cumulative subquery lengths of the sequences in
|
|
# the batch, used to index into subquery. E.g., if the subquery length
|
|
# is [4, 6], it is [0, 4, 10].
|
|
subquery_start_loc: Optional[torch.Tensor]
|
|
# FIXME: It is for flash attn.
|
|
# (batch_size + 1,). The cumulative sequence lengths of the sequences in
|
|
# the batch, used to index into sequence. E.g., if the sequence length is
|
|
# [4, 6], it is [0, 4, 10].
|
|
seq_start_loc: Optional[torch.Tensor]
|
|
|
|
# Whether or not if cuda graph is enabled.
|
|
# Cuda-graph is currently enabled for decoding only.
|
|
# TODO(woosuk): Move `use_cuda_graph` out since it's unrelated to attention.
|
|
use_cuda_graph: bool
|
|
|
|
def __post_init__(self):
|
|
# Set during the execution of the first attention op.
|
|
# It is a list because it is needed to set per prompt
|
|
# when alibi slopes is used. It is because of the limitation
|
|
# from xformer API.
|
|
# will not appear in the __repr__ and __init__
|
|
self.attn_bias: Optional[List[AttentionBias]] = None
|
|
|
|
|
|
class XFormersImpl(AttentionImpl):
|
|
"""
|
|
If the input tensors contain prompt tokens, the layout is as follows:
|
|
|<--------------- num_prefill_tokens ----------------->|
|
|
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
|
|
|
|
Otherwise, the layout is as follows:
|
|
|<----------------- num_decode_tokens ------------------>|
|
|
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
|
|
|
|
Generation tokens can contain padding when cuda-graph is used.
|
|
Currently, prompt tokens don't contain any padding.
|
|
|
|
The prompts might have different lengths, while the generation tokens
|
|
always have length 1.
|
|
|
|
If chunked prefill is enabled, prefill tokens and decode tokens can be
|
|
batched together in a flattened 1D query.
|
|
|
|
|<----- num_prefill_tokens ---->|<------- num_decode_tokens --------->|
|
|
|<-prefill_0->|...|<-prefill_N-1->|<--decode_0-->|...|<--decode_M-1-->|
|
|
|
|
Currently, cuda graph is disabled for chunked prefill, meaning there's no
|
|
padding between prefill and decode tokens.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: Optional[int] = None,
|
|
alibi_slopes: Optional[List[float]] = None,
|
|
sliding_window: Optional[int] = None,
|
|
) -> None:
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
|
|
self.sliding_window = sliding_window
|
|
if alibi_slopes is not None:
|
|
alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32)
|
|
self.alibi_slopes = alibi_slopes
|
|
|
|
assert self.num_heads % self.num_kv_heads == 0
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
|
|
suppored_head_sizes = PagedAttention.get_supported_head_sizes()
|
|
if head_size not in suppored_head_sizes:
|
|
raise ValueError(
|
|
f"Head size {head_size} is not supported by PagedAttention. "
|
|
f"Supported head sizes are: {suppored_head_sizes}.")
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: Optional[torch.Tensor],
|
|
attn_metadata: AttentionMetadata[XFormersMetadata],
|
|
kv_scale: float,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with xFormers and PagedAttention.
|
|
|
|
Args:
|
|
query: shape = [num_tokens, num_heads * head_size]
|
|
key: shape = [num_tokens, num_kv_heads * head_size]
|
|
value: shape = [num_tokens, num_kv_heads * head_size]
|
|
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
|
|
attn_metadata: Metadata for attention.
|
|
Returns:
|
|
shape = [num_tokens, num_heads * head_size]
|
|
"""
|
|
num_tokens, hidden_size = query.shape
|
|
query = query.view(-1, self.num_heads, self.head_size)
|
|
key = key.view(-1, self.num_kv_heads, self.head_size)
|
|
value = value.view(-1, self.num_kv_heads, self.head_size)
|
|
|
|
if kv_cache is not None:
|
|
key_cache, value_cache = PagedAttention.split_kv_cache(
|
|
kv_cache, self.num_kv_heads, self.head_size)
|
|
|
|
# Reshape the input keys and values and store them in the cache.
|
|
# If kv_cache is not provided, the new key and value tensors are
|
|
# not cached. This happens during the initial memory profiling run.
|
|
PagedAttention.write_to_paged_cache(key, value, key_cache,
|
|
value_cache,
|
|
attn_metadata.slot_mapping,
|
|
attn_metadata.kv_cache_dtype,
|
|
kv_scale)
|
|
|
|
num_prefill_tokens = attn_metadata.num_prefill_tokens
|
|
num_decode_tokens = attn_metadata.num_decode_tokens
|
|
assert key.shape[0] == num_prefill_tokens + num_decode_tokens
|
|
assert value.shape[0] == num_prefill_tokens + num_decode_tokens
|
|
|
|
output = torch.empty_like(query)
|
|
# Query for decode. KV is not needed because it is already cached.
|
|
decode_query = query[num_prefill_tokens:]
|
|
# QKV for prefill.
|
|
query = query[:num_prefill_tokens]
|
|
key = key[:num_prefill_tokens]
|
|
value = value[:num_prefill_tokens]
|
|
|
|
assert query.shape[0] == num_prefill_tokens
|
|
assert decode_query.shape[0] == num_decode_tokens
|
|
|
|
if prefill_meta := attn_metadata.prefill_metadata:
|
|
# Prompt run.
|
|
if kv_cache is None or prefill_meta.block_tables.numel() == 0:
|
|
# normal attention.
|
|
# block tables are empty if the prompt does not have a cached
|
|
# prefix.
|
|
out = self._run_memory_efficient_xformers_forward(
|
|
query, key, value, prefill_meta)
|
|
assert out.shape == output[:num_prefill_tokens].shape
|
|
output[:num_prefill_tokens] = out
|
|
else:
|
|
# prefix-enabled attention
|
|
# TODO(Hai) this triton kernel has regression issue (broke) to
|
|
# deal with different data types between KV and FP8 KV cache,
|
|
# to be addressed separately.
|
|
out = PagedAttention.forward_prefix(
|
|
query,
|
|
key,
|
|
value,
|
|
key_cache,
|
|
value_cache,
|
|
prefill_meta.block_tables,
|
|
prefill_meta.subquery_start_loc,
|
|
prefill_meta.prompt_lens_tensor,
|
|
prefill_meta.context_lens,
|
|
prefill_meta.max_subquery_len,
|
|
self.alibi_slopes,
|
|
)
|
|
assert output[:num_prefill_tokens].shape == out.shape
|
|
output[:num_prefill_tokens] = out
|
|
|
|
if decode_meta := attn_metadata.decode_metadata:
|
|
output[num_prefill_tokens:] = PagedAttention.forward_decode(
|
|
decode_query,
|
|
key_cache,
|
|
value_cache,
|
|
decode_meta.block_tables,
|
|
decode_meta.context_lens,
|
|
decode_meta.max_context_len,
|
|
attn_metadata.kv_cache_dtype,
|
|
self.num_kv_heads,
|
|
self.scale,
|
|
self.alibi_slopes,
|
|
kv_scale,
|
|
)
|
|
|
|
# Reshape the output tensor.
|
|
return output.view(-1, self.num_heads * self.head_size)
|
|
|
|
def _run_memory_efficient_xformers_forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
attn_metadata: XFormersMetadata,
|
|
) -> torch.Tensor:
|
|
"""Attention for 1D query of multiple prompts. Multiple prompt
|
|
tokens are flattened in to `query` input.
|
|
|
|
See https://facebookresearch.github.io/xformers/components/ops.html
|
|
for API spec.
|
|
|
|
Args:
|
|
output: shape = [num_prefill_tokens, num_heads, head_size]
|
|
query: shape = [num_prefill_tokens, num_heads, head_size]
|
|
key: shape = [num_prefill_tokens, num_kv_heads, head_size]
|
|
value: shape = [num_prefill_tokens, num_kv_heads, head_size]
|
|
attn_metadata: Metadata for attention.
|
|
"""
|
|
original_query = query
|
|
if self.num_kv_heads != self.num_heads:
|
|
# GQA/MQA requires the shape [B, M, G, H, K].
|
|
# Note that the output also has the same shape (which is different
|
|
# from a spec from the doc).
|
|
query = query.view(query.shape[0], self.num_kv_heads,
|
|
self.num_queries_per_kv, query.shape[-1])
|
|
key = key[:, :,
|
|
None, :].expand(key.shape[0], self.num_kv_heads,
|
|
self.num_queries_per_kv, key.shape[-1])
|
|
value = value[:, :,
|
|
None, :].expand(value.shape[0], self.num_kv_heads,
|
|
self.num_queries_per_kv,
|
|
value.shape[-1])
|
|
# Set attention bias if not provided. This typically happens at
|
|
# the very attention layer of every iteration.
|
|
# FIXME(woosuk): This is a hack.
|
|
if attn_metadata.attn_bias is None:
|
|
if self.alibi_slopes is None:
|
|
attn_bias = BlockDiagonalCausalMask.from_seqlens(
|
|
attn_metadata.prompt_lens)
|
|
if self.sliding_window is not None:
|
|
attn_bias = attn_bias.make_local_attention(
|
|
self.sliding_window)
|
|
attn_metadata.attn_bias = [attn_bias]
|
|
else:
|
|
attn_metadata.attn_bias = _make_alibi_bias(
|
|
self.alibi_slopes, self.num_kv_heads, query.dtype,
|
|
attn_metadata.prompt_lens)
|
|
|
|
# No alibi slopes.
|
|
# TODO(woosuk): Too many view operations. Let's try to reduce
|
|
# them in the future for code readability.
|
|
if self.alibi_slopes is None:
|
|
# Add the batch dimension.
|
|
query = query.unsqueeze(0)
|
|
key = key.unsqueeze(0)
|
|
value = value.unsqueeze(0)
|
|
out = xops.memory_efficient_attention_forward(
|
|
query,
|
|
key,
|
|
value,
|
|
attn_bias=attn_metadata.attn_bias[0],
|
|
p=0.0,
|
|
scale=self.scale)
|
|
return out.view_as(original_query)
|
|
|
|
# Attention with alibi slopes.
|
|
# FIXME(woosuk): Because xformers does not support dynamic sequence
|
|
# lengths with custom attention bias, we process each prompt one by
|
|
# one. This is inefficient, especially when we have many short prompts.
|
|
output = torch.empty_like(original_query)
|
|
start = 0
|
|
for i, prompt_len in enumerate(attn_metadata.prompt_lens):
|
|
end = start + prompt_len
|
|
out = xops.memory_efficient_attention_forward(
|
|
query[None, start:end],
|
|
key[None, start:end],
|
|
value[None, start:end],
|
|
attn_bias=attn_metadata.attn_bias[i],
|
|
p=0.0,
|
|
scale=self.scale)
|
|
# TODO(woosuk): Unnecessary copy. Optimize.
|
|
output[start:end].copy_(out.view_as(original_query[start:end]))
|
|
start += prompt_len
|
|
return output
|
|
|
|
|
|
def _make_alibi_bias(
|
|
alibi_slopes: torch.Tensor,
|
|
num_kv_heads: int,
|
|
dtype: torch.dtype,
|
|
prompt_lens: List[int],
|
|
) -> LowerTriangularMaskWithTensorBias:
|
|
attn_biases = []
|
|
for prompt_len in prompt_lens:
|
|
bias = torch.arange(prompt_len, dtype=dtype)
|
|
# NOTE(zhuohan): HF uses
|
|
# `bias = bias[None, :].repeat(prompt_len, 1)`
|
|
# here. We find that both biases give the same results, but
|
|
# the bias below more accurately follows the original ALiBi
|
|
# paper.
|
|
# Calculate a matrix where each element represents ith element- jth
|
|
# element.
|
|
bias = bias[None, :] - bias[:, None]
|
|
|
|
padded_len = (prompt_len + 7) // 8 * 8
|
|
num_heads = alibi_slopes.shape[0]
|
|
bias = torch.empty(
|
|
1, # batch size
|
|
num_heads,
|
|
prompt_len,
|
|
padded_len,
|
|
device=alibi_slopes.device,
|
|
dtype=dtype,
|
|
)[:, :, :, :prompt_len].copy_(bias)
|
|
bias.mul_(alibi_slopes[:, None, None])
|
|
if num_heads != num_kv_heads:
|
|
bias = bias.unflatten(1, (num_kv_heads, num_heads // num_kv_heads))
|
|
attn_biases.append(LowerTriangularMaskWithTensorBias(bias))
|
|
|
|
return attn_biases
|