368 lines
13 KiB
Python
368 lines
13 KiB
Python
import functools
|
|
from collections import UserDict
|
|
from dataclasses import dataclass
|
|
from typing import (TYPE_CHECKING, Any, Callable, Dict, Mapping, NamedTuple,
|
|
Optional, Protocol, Type, cast)
|
|
|
|
from torch import nn
|
|
from transformers import PretrainedConfig, ProcessorMixin
|
|
from typing_extensions import TypeVar, assert_never
|
|
|
|
from vllm.logger import init_logger
|
|
from vllm.transformers_utils.processor import cached_get_processor
|
|
from vllm.transformers_utils.tokenizer import AnyTokenizer
|
|
from vllm.utils import (get_allowed_kwarg_only_overrides, print_warning_once,
|
|
resolve_mm_processor_kwargs)
|
|
|
|
from .data import ProcessorInputs, SingletonInputs
|
|
from .parse import is_encoder_decoder_inputs
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.config import ModelConfig
|
|
from vllm.multimodal import (MultiModalDataDict, MultiModalPlaceholderDict,
|
|
MultiModalRegistry)
|
|
from vllm.sequence import SequenceData
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
C = TypeVar("C", bound=PretrainedConfig, default=PretrainedConfig)
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class InputContext:
|
|
"""
|
|
Contains information about the model which may be used to
|
|
modify the inputs.
|
|
"""
|
|
|
|
model_config: "ModelConfig"
|
|
"""The configuration of the model."""
|
|
|
|
def get_hf_config(self, hf_config_type: Type[C] = PretrainedConfig) -> C:
|
|
"""
|
|
Get the HuggingFace configuration
|
|
(:class:`transformers.PretrainedConfig`) of the model,
|
|
additionally checking its type.
|
|
|
|
Raises:
|
|
TypeError: If the model is not of the specified type.
|
|
"""
|
|
|
|
hf_config = self.model_config.hf_config
|
|
if not isinstance(hf_config, hf_config_type):
|
|
raise TypeError("Invalid type of HuggingFace config. "
|
|
f"Expected type: {hf_config_type}, but "
|
|
f"found type: {type(hf_config)}")
|
|
|
|
return hf_config
|
|
|
|
def get_hf_image_processor_config(self) -> Dict[str, Any]:
|
|
"""
|
|
Get the HuggingFace image processor configuration of the model.
|
|
"""
|
|
|
|
return self.model_config.hf_image_processor_config
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class InputProcessingContext(InputContext):
|
|
tokenizer: AnyTokenizer
|
|
"""The tokenizer used to tokenize the inputs."""
|
|
|
|
def get_hf_processor(self) -> ProcessorMixin:
|
|
return cached_get_processor(
|
|
self.model_config.tokenizer,
|
|
tokenizer=self.tokenizer, # Override the tokenizer with ours
|
|
trust_remote_code=self.model_config.trust_remote_code,
|
|
)
|
|
|
|
|
|
N = TypeVar("N", bound=Type[nn.Module])
|
|
|
|
|
|
class DummyData(NamedTuple):
|
|
"""Dummy data used for profiling."""
|
|
|
|
seq_data: "SequenceData"
|
|
multi_modal_data: Optional["MultiModalDataDict"] = None
|
|
multi_modal_placeholders: Optional["MultiModalPlaceholderDict"] = None
|
|
|
|
|
|
class DummyDataFactory(Protocol):
|
|
|
|
def __call__(
|
|
self,
|
|
ctx: InputContext,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
**mm_processor_kwargs: Any,
|
|
) -> DummyData:
|
|
"""
|
|
Create dummy data to be inputted into the model.
|
|
|
|
Note:
|
|
:data:`InputProcessor` is not applied to the dummy data.
|
|
|
|
The :code:`mm_processor_kwargs` are overrides provided at
|
|
initialization time to values in the config whose values
|
|
may affect the number of tokens per instance.
|
|
"""
|
|
...
|
|
|
|
|
|
class _MultiModalCounts(UserDict[str, int]):
|
|
"""
|
|
Wraps `mm_counts` for a more informative error message
|
|
when attempting to access a plugin that does not exist.
|
|
"""
|
|
|
|
def __getitem__(self, key: str) -> int:
|
|
try:
|
|
return super().__getitem__(key)
|
|
except KeyError as exc:
|
|
msg = (f"There is no multi-modal plugin with the key: {key}. "
|
|
f"Available keys: {set(self.keys())}")
|
|
raise KeyError(msg) from exc
|
|
|
|
|
|
InputProcessor = Callable[[InputContext, ProcessorInputs], ProcessorInputs]
|
|
"""Preprocess the inputs to the model."""
|
|
|
|
|
|
class InputRegistry:
|
|
"""
|
|
A registry to dispatch data processing
|
|
according to the target model.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
self._dummy_factories_by_model_type: Dict[Type[nn.Module],
|
|
DummyDataFactory] = {}
|
|
self._dummy_encoder_factories_by_model_type: Dict[
|
|
Type[nn.Module], DummyDataFactory] = {}
|
|
self._input_processors_by_model_type: Dict[Type[nn.Module],
|
|
InputProcessor] = {}
|
|
|
|
def _default_dummy_data_factory(
|
|
self,
|
|
ctx: InputContext,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> DummyData:
|
|
"""
|
|
The default dummy data factory represents the longest possible text
|
|
that can be inputted to the model.
|
|
|
|
Note:
|
|
:data:`InputProcessor` is not applied to the dummy data.
|
|
"""
|
|
# Avoid circular import
|
|
from vllm.sequence import SequenceData
|
|
|
|
return DummyData(SequenceData.from_prompt_token_counts((0, seq_len)))
|
|
|
|
def register_dummy_data(self, factory: DummyDataFactory):
|
|
"""
|
|
Register a dummy data factory to a model class.
|
|
|
|
During memory profiling, the provided function is invoked to create
|
|
dummy data to be inputted into the model. The resulting memory usage
|
|
should be an upper bound of what the model would use at inference time.
|
|
"""
|
|
|
|
def wrapper(model_cls: N) -> N:
|
|
if model_cls in self._dummy_factories_by_model_type:
|
|
logger.warning(
|
|
"Model class %s already has dummy data "
|
|
"registered to %s. It is overwritten by the new one.",
|
|
model_cls, self)
|
|
|
|
self._dummy_factories_by_model_type[model_cls] = factory
|
|
|
|
return model_cls
|
|
|
|
return wrapper
|
|
|
|
def _get_dummy_data_factory(self, model_cls: Type[nn.Module]):
|
|
return self._dummy_factories_by_model_type \
|
|
.get(model_cls, self._default_dummy_data_factory)
|
|
|
|
def register_dummy_encoder_data(self, factory: DummyDataFactory):
|
|
"""
|
|
Register a dummy encoder data factory to a model class
|
|
|
|
This is similar to :meth:`~register_dummy_data`, but for encoder input.
|
|
"""
|
|
|
|
def wrapper(model_cls: N) -> N:
|
|
if model_cls in self._dummy_encoder_factories_by_model_type:
|
|
logger.warning(
|
|
"Model class %s already has dummy encoder data "
|
|
"registered to %s. It is overwritten by the new one.",
|
|
model_cls, self)
|
|
|
|
self._dummy_encoder_factories_by_model_type[model_cls] = factory
|
|
|
|
return model_cls
|
|
|
|
return wrapper
|
|
|
|
def _get_dummy_encoder_data_factory(self, model_cls: Type[nn.Module]):
|
|
return self._dummy_encoder_factories_by_model_type \
|
|
.get(model_cls, self._default_dummy_data_factory)
|
|
|
|
def dummy_data_for_profiling(
|
|
self,
|
|
model_config: "ModelConfig",
|
|
seq_len: int,
|
|
mm_registry: "MultiModalRegistry",
|
|
is_encoder_data: bool = False,
|
|
) -> DummyData:
|
|
"""
|
|
Create dummy data for profiling the memory usage of a model.
|
|
|
|
The model is identified by ``model_config``.
|
|
|
|
See also:
|
|
:ref:`enabling_multimodal_inputs`
|
|
|
|
Note:
|
|
This should be called after
|
|
:meth:`~MultiModalRegistry.init_mm_limits_per_prompt`.
|
|
"""
|
|
# Avoid circular import
|
|
from vllm.model_executor.model_loader import get_model_architecture
|
|
|
|
model_cls, _ = get_model_architecture(model_config)
|
|
if is_encoder_data:
|
|
dummy_factory = self._get_dummy_encoder_data_factory(model_cls)
|
|
else:
|
|
dummy_factory = self._get_dummy_data_factory(model_cls)
|
|
mm_counts = mm_registry.get_mm_limits_per_prompt(model_config)
|
|
mm_processor_kwargs = get_allowed_kwarg_only_overrides(
|
|
dummy_factory, overrides=model_config.mm_processor_kwargs)
|
|
|
|
dummy_data = dummy_factory(InputContext(model_config), seq_len,
|
|
_MultiModalCounts(mm_counts),
|
|
**mm_processor_kwargs)
|
|
|
|
# Having more tokens is over-conservative but otherwise fine
|
|
num_tokens = dummy_data.seq_data.prompt_token_ids
|
|
if len(num_tokens) < seq_len:
|
|
if is_encoder_data:
|
|
print_warning_once(
|
|
f"Expected at least {seq_len} dummy encoder tokens for "
|
|
f"profiling, but found {len(num_tokens)} tokens instead.")
|
|
else:
|
|
raise AssertionError(
|
|
f"Expected at least {seq_len} dummy tokens for profiling, "
|
|
f"but found {len(num_tokens)} tokens instead.")
|
|
if dummy_data.multi_modal_data is not None:
|
|
for k, v in dummy_data.multi_modal_data.items():
|
|
num_items = len(v) if isinstance(v, list) else 1
|
|
num_expected = mm_counts[k]
|
|
assert num_items >= num_expected, (
|
|
f"Expected at least {num_expected} dummy '{k}' instances "
|
|
f"for profiling, but found {num_items} instances instead.")
|
|
|
|
return dummy_data
|
|
|
|
def _default_input_processor(
|
|
self,
|
|
ctx: InputContext,
|
|
inputs: ProcessorInputs,
|
|
) -> ProcessorInputs:
|
|
"""The default input processor is a no-op."""
|
|
return inputs
|
|
|
|
def register_input_processor(self, processor: InputProcessor):
|
|
"""
|
|
Register an input processor to a model class.
|
|
|
|
The provided function is invoked on each input to the model. This
|
|
happens before :meth:`~vllm.multimodal.MultiModalRegistry.map_input`.
|
|
|
|
See also:
|
|
:ref:`input_processing_pipeline`
|
|
"""
|
|
|
|
def wrapper(model_cls: N) -> N:
|
|
if model_cls in self._input_processors_by_model_type:
|
|
logger.warning(
|
|
"Model class %s already has input processor "
|
|
"registered to %s. It is overwritten by the new one.",
|
|
model_cls, self)
|
|
|
|
self._input_processors_by_model_type[model_cls] = processor
|
|
|
|
return model_cls
|
|
|
|
return wrapper
|
|
|
|
def _get_model_input_processor(self, model_cls: Type[nn.Module]):
|
|
return self._input_processors_by_model_type \
|
|
.get(model_cls, self._default_input_processor)
|
|
|
|
def _ensure_mm_kwargs(
|
|
self,
|
|
inputs: SingletonInputs,
|
|
mm_processor_kwargs: Dict[str, Any],
|
|
):
|
|
if inputs["type"] == "token":
|
|
# In case the input processor for that model fails to set it
|
|
if "mm_processor_kwargs" not in inputs:
|
|
inputs["mm_processor_kwargs"] = mm_processor_kwargs
|
|
elif inputs["type"] == "multimodal":
|
|
# Be more strict in V2
|
|
assert "mm_kwargs" in inputs
|
|
else:
|
|
assert_never(inputs["type"])
|
|
|
|
def process_input(self, model_config: "ModelConfig",
|
|
inputs: ProcessorInputs) -> ProcessorInputs:
|
|
"""
|
|
Apply an input processor to an instance of model inputs.
|
|
|
|
The model is identified by ``model_config``.
|
|
|
|
See also:
|
|
:ref:`input_processing_pipeline`
|
|
"""
|
|
# Avoid circular import
|
|
from vllm.model_executor.model_loader import get_model_architecture
|
|
|
|
model_cls, _ = get_model_architecture(model_config)
|
|
processor = self._get_model_input_processor(model_cls)
|
|
|
|
# Handle multimodal processor kwargs with priority:
|
|
# Inference kwargs -> Init kwargs -> {}
|
|
# If it's empty, it'll fall back to the default kwarg values
|
|
mm_processor_kwargs = resolve_mm_processor_kwargs(
|
|
model_config.mm_processor_kwargs,
|
|
cast(Dict[str, Any], inputs.get("mm_processor_kwargs")),
|
|
processor,
|
|
)
|
|
|
|
processed_inputs = processor(
|
|
InputContext(model_config),
|
|
inputs,
|
|
**mm_processor_kwargs,
|
|
)
|
|
|
|
if is_encoder_decoder_inputs(processed_inputs):
|
|
self._ensure_mm_kwargs(processed_inputs["encoder"],
|
|
mm_processor_kwargs)
|
|
self._ensure_mm_kwargs(processed_inputs["decoder"],
|
|
mm_processor_kwargs)
|
|
else:
|
|
self._ensure_mm_kwargs(processed_inputs, mm_processor_kwargs)
|
|
|
|
return processed_inputs
|
|
|
|
def create_input_processor(self, model_config: "ModelConfig"):
|
|
"""
|
|
Create an input processor (see :meth:`_process_input`) for a
|
|
specific model.
|
|
"""
|
|
return functools.partial(self.process_input, model_config)
|