vllm/tests/quantization/test_autogptq_marlin_configs.py
Qubitium 7d4e1b85e7
[Misc] Add support for new autogptq checkpoint_format (#3689)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-04-01 19:32:01 -04:00

69 lines
1.9 KiB
Python

"""Tests whether Marlin models can be loaded from the autogptq config.
Run `pytest tests/quantization/test_autogptq_marlin_configs.py --forked`.
"""
from dataclasses import dataclass
import pytest
from vllm.config import ModelConfig
@dataclass
class ModelPair:
model_marlin: str
model_gptq: str
# Model Id // Expected Kernel
MODELS_QUANT_TYPE = [
# compat: autogptq <=0.7.1 is_marlin_format: bool
("neuralmagic/TinyLlama-1.1B-Chat-v1.0-marlin", "marlin"),
("TheBloke/Llama-2-7B-Chat-GPTQ", "gptq"),
# compat: autogptq >=0.8.0 use checkpoint_format: str
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-Marlin-4bit", "marlin"),
("LnL-AI/TinyLlama-1.1B-Chat-v1.0-GPTQ-4bit", "gptq")
]
@pytest.mark.parametrize("model_quant_type", MODELS_QUANT_TYPE)
def test_auto_gptq(model_quant_type: str, ) -> None:
model_path, quant_type = model_quant_type
model_config_no_quant_arg = ModelConfig(
model_path,
model_path,
tokenizer_mode="auto",
trust_remote_code=False,
download_dir=None,
load_format="dummy",
seed=0,
dtype="float16",
revision=None,
quantization=None # case 1
)
model_config_quant_arg = ModelConfig(
model_path,
model_path,
tokenizer_mode="auto",
trust_remote_code=False,
download_dir=None,
load_format="dummy",
seed=0,
dtype="float16",
revision=None,
quantization="gptq" # case 2
)
assert model_config_no_quant_arg.quantization == quant_type, (
f"Expected quant_type == {quant_type} for {model_path}, "
f"but found {model_config_no_quant_arg.quantization} "
"for no --quantization None case")
assert model_config_quant_arg.quantization == quant_type, (
f"Expected quant_type == {quant_type} for {model_path}, "
f"but found {model_config_quant_arg.quantization} "
"for --quantization gptq case")