vllm/csrc/quantization/cutlass_w8a8/broadcast_load_epilogue_c3x.hpp

390 lines
15 KiB
C++

/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights
*reserved. SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
*this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
//
// This file is a modified excerpt of
// include/cutlass/epilogue/fusion/sm90_visitor_load_tma_warpspecialized.hpp
// from https://github.com/NVIDIA/cutlass v3.5.0
// It has been modified to support either row/column or scalar broadcasting
// where the tensor being loaded from is always passed in via a device pointer.
// This lets one compiled kernel handle all cases of per-tensor or
// per-channel/per-token quantization.
//
// This interface also allows the scales to be passed in as tensors that
// consistently reside on the device, which avoids an issue with a previous
// implementation where scalars needed to be on the CPU since they
// were passed in via float values. This created a potential performance hazard
// if scales were initially on the device, and caused torch.compile graphs
// breaks when moving scales to the CPU.
//
#pragma once
// Turn off clang-format for the entire file to keep it close to upstream
// clang-format off
#include "cutlass/cutlass.h"
#include "cutlass/arch/barrier.h"
#include "cute/tensor.hpp"
#include "cutlass/epilogue/fusion/sm90_visitor_tma_warpspecialized.hpp"
namespace cutlass::epilogue::fusion {
using namespace cute;
using namespace detail;
// Row vector broadcast
template<
// Row bcast reuses the mbarriers from the epilogue subtile load pipeline, so this must be at least
// ceil_div(StagesC, epi tiles per CTA tile) + 1 to ensure no data races
int Stages,
class CtaTileShapeMNK,
class Element,
class StrideMNL = Stride<_0,_1,_0>,
int Alignment = 128 / sizeof_bits_v<Element>
>
struct Sm90RowOrScalarBroadcast {
static_assert(Alignment * sizeof_bits_v<Element> % 128 == 0, "sub-16B alignment not supported yet");
static_assert(
(cute::is_same_v<StrideMNL, Stride<_0,_1, _0>>) || // row vector broadcast, e.g. per-col alpha/bias
(cute::is_same_v<StrideMNL, Stride<_0,_1,int>>)); // batched row vector broadcast
// Accumulator doesn't distribute row elements evenly amongst threads so we must buffer in smem
struct SharedStorage {
alignas(16) array_aligned<Element, size<1>(CtaTileShapeMNK{}) * Stages> smem_row;
};
// This struct has been modified to have a bool indicating that ptr_row is a
// scalar that must be broadcast, instead of containing a scalar that is
// valid if ptr_row is null.
struct Arguments {
Element const* ptr_row = nullptr;
bool row_broadcast = true;
StrideMNL dRow = {};
};
using Params = Arguments;
template <class ProblemShape>
static constexpr Params
to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
return args;
}
template <class ProblemShape>
static size_t
get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
return 0;
}
template <class ProblemShape>
static cutlass::Status
initialize_workspace(ProblemShape const& problem_shape, Arguments const& args, void* workspace, cudaStream_t stream,
CudaHostAdapter* cuda_adapter = nullptr) {
return cutlass::Status::kSuccess;
}
CUTLASS_HOST_DEVICE
Sm90RowOrScalarBroadcast() { }
CUTLASS_HOST_DEVICE
Sm90RowOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage)
: params(params),
smem_row(const_cast<Element*>(shared_storage.smem_row.data())) { }
Params params;
Element* smem_row;
CUTLASS_DEVICE bool
is_producer_load_needed() const {
return true;
}
CUTLASS_DEVICE bool
is_C_load_needed() const {
return false;
}
CUTLASS_DEVICE bool
is_zero() const {
return (!params.row_broadcast && *(params.ptr_row) == Element(0));
}
template <int EpiTiles, class GTensor, class STensor>
struct ProducerLoadCallbacks : EmptyProducerLoadCallbacks {
CUTLASS_DEVICE
ProducerLoadCallbacks(GTensor&& gRow, STensor&& sRow, Params const& params)
: gRow(cute::forward<GTensor>(gRow)),
sRow(cute::forward<STensor>(sRow)),
params(params) {}
GTensor gRow; // (CTA_M,CTA_N)
STensor sRow; // (CTA_M,CTA_N,PIPE)
Params const& params;
CUTLASS_DEVICE void
begin(uint64_t* full_mbarrier_ptr, int load_iteration, bool issue_tma_load) {
if (params.ptr_row == nullptr) {
return;
}
if (issue_tma_load) {
// Increment the expect-tx count of the first subtile's mbarrier by the row vector's byte-size
constexpr uint32_t copy_bytes = size<1>(CtaTileShapeMNK{}) * sizeof_bits_v<Element> / 8;
cutlass::arch::ClusterTransactionBarrier::expect_transaction(full_mbarrier_ptr, copy_bytes);
// Issue the TMA bulk copy
auto bulk_copy = Copy_Atom<SM90_BULK_COPY_AUTO, Element>{}.with(*full_mbarrier_ptr);
// Filter so we don't issue redundant copies over stride-0 modes
int bcast_pipe_index = (load_iteration / EpiTiles) % Stages;
copy(bulk_copy, filter(gRow), filter(sRow(_,_,bcast_pipe_index)));
}
}
};
template <class... Args>
CUTLASS_DEVICE auto
get_producer_load_callbacks(ProducerLoadArgs<Args...> const& args) {
auto [M, N, K, L] = args.problem_shape_mnkl;
auto [m, n, k, l] = args.tile_coord_mnkl;
Tensor mRow = make_tensor(make_gmem_ptr(params.ptr_row), make_shape(M,N,L), params.dRow);
Tensor gRow = local_tile(mRow, take<0,2>(args.tile_shape_mnk), make_coord(m,n,l)); // (CTA_M,CTA_N)
Tensor sRow = make_tensor(make_smem_ptr(smem_row), // (CTA_M,CTA_N,PIPE)
make_shape(size<0>(CtaTileShapeMNK{}), size<1>(CtaTileShapeMNK{}), Stages),
make_stride(_0{},_1{},size<1>(CtaTileShapeMNK{})));
constexpr int EpiTiles = decltype(size<1>(zipped_divide(make_layout(take<0,2>(args.tile_shape_mnk)), args.epi_tile)))::value;
return ProducerLoadCallbacks<EpiTiles, decltype(gRow), decltype(sRow)>(
cute::move(gRow), cute::move(sRow), params);
}
template <int EpiTiles, class RTensor, class STensor>
struct ConsumerStoreCallbacks : EmptyConsumerStoreCallbacks {
CUTLASS_DEVICE
ConsumerStoreCallbacks(RTensor&& tCrRow, STensor&& tCsRow, Params const& params)
: tCrRow(cute::forward<RTensor>(tCrRow)),
tCsRow(cute::forward<STensor>(tCsRow)),
params(params) {}
RTensor tCrRow; // (CPY,CPY_M,CPY_N)
STensor tCsRow; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N,PIPE)
Params const& params;
CUTLASS_DEVICE void
previsit(int epi_m, int epi_n, int load_iteration, bool is_producer_load_needed) {
if (!params.row_broadcast) {
fill(tCrRow, *(params.ptr_row));
return;
}
if (epi_m == 0) { // Assumes M-major subtile loop
// Filter so we don't issue redundant copies over stride-0 modes
// (only works if 0-strides are in same location, which is by construction)
int bcast_pipe_index = (load_iteration / EpiTiles) % Stages;
copy_aligned(filter(tCsRow(_,_,_,epi_m,epi_n,bcast_pipe_index)), filter(tCrRow));
}
}
template <typename ElementAccumulator, int FragmentSize>
CUTLASS_DEVICE Array<Element, FragmentSize>
visit(Array<ElementAccumulator, FragmentSize> const& frg_acc, int epi_v, int epi_m, int epi_n) {
Array<Element, FragmentSize> frg_row;
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < FragmentSize; ++i) {
frg_row[i] = tCrRow(epi_v * FragmentSize + i);
}
return frg_row;
}
};
template <
bool ReferenceSrc, // do register tensors reference the src or dst layout of the tiled copy
class... Args
>
CUTLASS_DEVICE auto
get_consumer_store_callbacks(ConsumerStoreArgs<Args...> const& args) {
Tensor sRow = make_tensor(make_smem_ptr(smem_row), // (CTA_M,CTA_N,PIPE)
make_shape(size<0>(CtaTileShapeMNK{}), size<1>(CtaTileShapeMNK{}), Stages),
make_stride(_0{},_1{},size<1>(CtaTileShapeMNK{})));
Tensor tCsRow = sm90_partition_for_epilogue<ReferenceSrc>( // (CPY,CPY_M,CPY_N,EPI_M,EPI_N,PIPE)
sRow, args.epi_tile, args.tiled_copy, args.thread_idx);
Tensor tCrRow = make_tensor_like(take<0,3>(tCsRow)); // (CPY,CPY_M,CPY_N)
constexpr int EpiTiles = decltype(size<1>(zipped_divide(make_layout(take<0,2>(args.tile_shape_mnk)), args.epi_tile)))::value;
return ConsumerStoreCallbacks<EpiTiles, decltype(tCrRow), decltype(tCsRow)>(
cute::move(tCrRow), cute::move(tCsRow), params);
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
// Column vector broadcast
template<
int Stages,
class CtaTileShapeMNK,
class Element,
class StrideMNL = Stride<_1,_0,_0>,
int Alignment = 128 / sizeof_bits_v<Element>
>
struct Sm90ColOrScalarBroadcast {
static_assert(Stages == 0, "Column broadcast doesn't support smem usage yet");
static_assert(Alignment * sizeof_bits_v<Element> % 128 == 0, "sub-16B alignment not supported yet");
static_assert(
(cute::is_same_v<StrideMNL, Stride<_1,_0, _0>>) || // col vector broadcast, e.g. per-row alpha/bias
(cute::is_same_v<StrideMNL, Stride<_1,_0,int>>)); // batched col vector broadcast, e.g. batched per-row bias
// Accumulator distributes col elements evenly amongst threads so we can just directly load from gmem
struct SharedStorage { };
// This struct has been modified to have a bool indicating that ptr_col is a
// scalar that must be broadcast, instead of containing a scalar that is
// valid if ptr_col is null.
struct Arguments {
Element const* ptr_col = nullptr;
bool col_broadcast = true;
StrideMNL dCol = {};
};
using Params = Arguments;
template <class ProblemShape>
static constexpr Params
to_underlying_arguments(ProblemShape const& problem_shape, Arguments const& args, void* workspace) {
return args;
}
template <class ProblemShape>
static size_t
get_workspace_size(ProblemShape const& problem_shape, Arguments const& args) {
return 0;
}
template <class ProblemShape>
static cutlass::Status
initialize_workspace(ProblemShape const& problem_shape, Arguments const& args, void* workspace, cudaStream_t stream,
CudaHostAdapter* cuda_adapter = nullptr) {
return cutlass::Status::kSuccess;
}
CUTLASS_DEVICE bool
is_producer_load_needed() const {
return false;
}
CUTLASS_DEVICE bool
is_C_load_needed() const {
return false;
}
CUTLASS_DEVICE bool
is_zero() const {
return (!params.col_broadcast && *(params.ptr_col) == Element(0));
}
CUTLASS_HOST_DEVICE
Sm90ColOrScalarBroadcast() { }
CUTLASS_HOST_DEVICE
Sm90ColOrScalarBroadcast(Params const& params, SharedStorage const& shared_storage)
: params(params) { }
Params params;
template <class... Args>
CUTLASS_DEVICE auto
get_producer_load_callbacks(ProducerLoadArgs<Args...> const& args) {
return EmptyProducerLoadCallbacks{};
}
template<class GTensor, class RTensor>
struct ConsumerStoreCallbacks : EmptyConsumerStoreCallbacks {
CUTLASS_DEVICE
ConsumerStoreCallbacks(GTensor&& tCgCol, RTensor&& tCrCol, Params const& params)
: tCgCol(cute::forward<GTensor>(tCgCol)),
tCrCol(cute::forward<RTensor>(tCrCol)),
params(params) {}
GTensor tCgCol; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
RTensor tCrCol; // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
Params const& params;
CUTLASS_DEVICE void
begin() {
if (!params.col_broadcast) {
fill(tCrCol, *(params.ptr_col));
return;
}
// Filter so we don't issue redundant copies over stride-0 modes
// (only works if 0-strides are in same location, which is by construction)
copy_aligned(filter(tCgCol), filter(tCrCol));
}
template <typename ElementAccumulator, int FragmentSize>
CUTLASS_DEVICE Array<Element, FragmentSize>
visit(Array<ElementAccumulator, FragmentSize> const& frg_acc, int epi_v, int epi_m, int epi_n) {
Array<Element, FragmentSize> frg_col;
Tensor tCrCol_mn = tCrCol(_,_,_,epi_m,epi_n);
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < FragmentSize; ++i) {
frg_col[i] = tCrCol_mn(epi_v * FragmentSize + i);
}
return frg_col;
}
};
template <
bool ReferenceSrc, // do register tensors reference the src or dst layout of the tiled copy
class... Args
>
CUTLASS_DEVICE auto
get_consumer_store_callbacks(ConsumerStoreArgs<Args...> const& args) {
auto [M, N, K, L] = args.problem_shape_mnkl;
Tensor mCol = make_tensor(make_gmem_ptr(params.ptr_col), make_shape(M,N,L), params.dCol);
Tensor tCgCol = sm90_partition_for_epilogue<ReferenceSrc>( // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
mCol, args.tile_shape_mnk, args.tile_coord_mnkl, args.epi_tile, args.tiled_copy, args.thread_idx);
Tensor tCrCol = make_tensor_like(tCgCol); // (CPY,CPY_M,CPY_N,EPI_M,EPI_N)
return ConsumerStoreCallbacks<decltype(tCgCol), decltype(tCrCol)>(
cute::move(tCgCol), cute::move(tCrCol), params);
}
};
}