vllm/vllm/spec_decode/ngram_worker.py

177 lines
6.4 KiB
Python

from typing import List, Optional, Tuple
import torch
from vllm.sequence import ExecuteModelRequest, SamplerOutput
from vllm.spec_decode.interfaces import SpeculativeProposals
from vllm.spec_decode.top1_proposer import Top1Proposer
from vllm.worker.worker_base import LoraNotSupportedWorkerBase
class NGramWorker(LoraNotSupportedWorkerBase):
"""NGramWorker provides a light drafter without need for model.
Current NGramWorker only implement prompt lookup decoding,
and in future we may also do RAG type drafter and other scenerios
which don't rely on LLM model to give proposals.
"""
def __init__(self, *args, **kwargs):
# Get local_rank/vocab_size from kwargs attribute
self.local_rank = kwargs["local_rank"]
self.vocab_size = kwargs["model_config"].get_vocab_size()
# Lazy initialization list.
self._proposer: Top1Proposer
def set_ngram_window_size(self, ngram_prompt_lookup_min: int,
ngram_prompt_lookup_max: int):
# Search valid candidate window between
# ngram_prompt_lookup_min/ngram_prompt_lookup_max
self.ngram_prompt_lookup_max = ngram_prompt_lookup_max
self.ngram_prompt_lookup_min = ngram_prompt_lookup_min
def init_device(self):
self.device = torch.device(f"cuda:{self.local_rank}")
self.load_model = lambda *args, **kwargs: None
# Current only support Top1Proposer
self._proposer = Top1Proposer(
self,
device=self.device,
vocab_size=self.vocab_size,
)
def set_include_gpu_probs_tensor(self):
# NGram don't need gpu sampler
pass
def execute_model(self, execute_model_req: ExecuteModelRequest) -> None:
"""NGram doesn't depend on model execution, just pass this function"""
pass
def determine_num_available_blocks(self) -> None:
"""NGram doesn't depend on model execution, no need to check blocks"""
pass
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""As there is no cache need to handle, just pass this function"""
pass
def get_cache_block_size_bytes(self):
"""Return the size of a cache block in bytes."""
return 0
def sampler_output(
self,
execute_model_req: ExecuteModelRequest,
sample_len: int,
) -> Tuple[Optional[List[SamplerOutput]], bool]:
"""NGram match algo to pick proposal candidate. Returns the list of
sampler output, one per SequenceGroupMetadata.
For ngram worker, we already done needed transposed internal, so the
indicator pass to sampler_output_to_torch shall be False.
"""
self._raise_if_unsupported(execute_model_req)
arr = []
has_spec_out = False
for seq_group_metadata in execute_model_req.seq_group_metadata_list:
seq_data = next(iter(seq_group_metadata.seq_data.values()))
input_ids = torch.as_tensor(seq_data.get_token_ids(),
dtype=torch.long,
device=self.device)
input_length = seq_data.get_len()
for ngram_size in range(
min(self.ngram_prompt_lookup_max, input_length - 1),
self.ngram_prompt_lookup_min,
-1,
):
ngram_tensor = input_ids[-1 * ngram_size:]
windows = input_ids.unfold(dimension=0,
size=ngram_size,
step=1)
matches = (windows == ngram_tensor).all(dim=1)
match_indices = matches.nonzero(as_tuple=True)[0]
if match_indices.size()[0] > 1:
has_spec_out = True
res = seq_data.get_token_ids()
res = res[match_indices[0] + ngram_size:match_indices[0] +
ngram_size + sample_len]
res_len = len(res)
# pad 0 towards output as sample_len tokens required
res += [0] * (sample_len - res_len)
break
else:
# if no candidate found, fill with 0
res = [0] * sample_len
arr.append(res)
if not has_spec_out:
return None, False
outputs = []
token_ids = torch.as_tensor(arr, dtype=torch.long, device=self.device)
indices = token_ids.unsqueeze(2)
token_probs = torch.zeros(
(len(execute_model_req.seq_group_metadata_list), sample_len,
self.vocab_size),
dtype=torch.float32,
device=self.device,
)
token_probs.scatter_(2, indices, 1)
token_logprobs = torch.zeros(
(len(execute_model_req.seq_group_metadata_list), sample_len,
self.vocab_size),
dtype=torch.float32,
device=self.device,
)
for i in range(len(execute_model_req.seq_group_metadata_list)):
outputs.append(
SamplerOutput(
outputs=None,
sampled_token_probs=token_probs[i],
logprobs=token_logprobs[i],
sampled_token_ids=token_ids[i],
))
return outputs, False
def get_spec_proposals(
self,
execute_model_req: ExecuteModelRequest,
) -> SpeculativeProposals:
"""Produce speculations given an input batch of sequences. The number of
speculative tokens per sequence is determined by max_proposal_len.
"""
return self._proposer.get_proposals(execute_model_req)
def _raise_if_unsupported(
self,
execute_model_req: ExecuteModelRequest,
) -> None:
"""NGramWorker does not yet implement support for cache swap
operations or beam search.
"""
if any([
execute_model_req.blocks_to_swap_in,
execute_model_req.blocks_to_swap_out,
execute_model_req.blocks_to_copy
]):
raise NotImplementedError(
"NGramWorker does not support cache operations")
if any(
len(seq_group_metadata.seq_data.keys()) != 1
for seq_group_metadata in
execute_model_req.seq_group_metadata_list):
raise NotImplementedError(
"NGramWorker does not support beam search.")