115 lines
4.6 KiB
Python
115 lines
4.6 KiB
Python
"""Attention layer."""
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from vllm.attention import AttentionMetadata, AttentionType
|
|
from vllm.attention.selector import get_attn_backend
|
|
from vllm.config import CacheConfig
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig)
|
|
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
|
|
|
|
|
|
class Attention(nn.Module):
|
|
"""Attention layer.
|
|
|
|
This class takes query, key, and value tensors as input. The input tensors
|
|
can either contain prompt tokens or generation tokens.
|
|
The class does the following:
|
|
|
|
1. Store the input key and value tensors in the KV cache.
|
|
2. Perform (multi-head/multi-query/grouped-query) attention.
|
|
3. Return the output tensor.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: Optional[int] = None,
|
|
alibi_slopes: Optional[List[float]] = None,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
blocksparse_params: Optional[Dict[str, Any]] = None,
|
|
logits_soft_cap: Optional[float] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
if cache_config is not None:
|
|
kv_cache_dtype = cache_config.cache_dtype
|
|
block_size = cache_config.block_size
|
|
sliding_window = cache_config.sliding_window
|
|
is_attention_free = cache_config.is_attention_free
|
|
else:
|
|
kv_cache_dtype = "auto"
|
|
block_size = 16
|
|
sliding_window = None
|
|
is_attention_free = False
|
|
if num_kv_heads is None:
|
|
num_kv_heads = num_heads
|
|
|
|
# The default k/v_scale is set to 1.0. This is ignored
|
|
# when kv-cache is not fp8, and should be used with
|
|
# kv-cache in fp8_e5m2. For kv-cache in fp8_e4m3, we
|
|
# expect the pre-quantized k/v_scale to be loaded along
|
|
# with the model weights.
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
self._k_scale = 1.0
|
|
self._v_scale = 1.0
|
|
quant_method = quant_config.get_quant_method(
|
|
self, prefix=prefix) if quant_config else None
|
|
if quant_method is not None:
|
|
assert isinstance(quant_method, BaseKVCacheMethod)
|
|
# TODO (mgoin): kv cache dtype should be specified in the FP8
|
|
# checkpoint config and become the "auto" behavior
|
|
if self.kv_cache_dtype == "fp8_e5m2":
|
|
raise ValueError("fp8_e5m2 kv-cache is not supported with "
|
|
"fp8 checkpoints.")
|
|
# If quantization is enabled, we make "k_scale" and "v_scale"
|
|
# parameters so that it can be loaded from the model checkpoint.
|
|
# The k/v_scale will then be converted back to native float32
|
|
# values after weight loading.
|
|
self.quant_method = quant_method
|
|
self.quant_method.create_weights(self)
|
|
|
|
# During model initialization, the default dtype is set as the model
|
|
# weight and activation dtype.
|
|
dtype = torch.get_default_dtype()
|
|
attn_backend = get_attn_backend(head_size, dtype, kv_cache_dtype,
|
|
block_size, is_attention_free,
|
|
blocksparse_params is not None)
|
|
impl_cls = attn_backend.get_impl_cls()
|
|
self.impl = impl_cls(num_heads, head_size, scale, num_kv_heads,
|
|
alibi_slopes, sliding_window, kv_cache_dtype,
|
|
blocksparse_params, logits_soft_cap)
|
|
|
|
def forward(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
attn_type: AttentionType = AttentionType.DECODER,
|
|
) -> torch.Tensor:
|
|
|
|
return self.impl.forward(query,
|
|
key,
|
|
value,
|
|
kv_cache,
|
|
attn_metadata,
|
|
self._k_scale,
|
|
self._v_scale,
|
|
attn_type=attn_type)
|
|
|
|
def extra_repr(self) -> str:
|
|
s = f"head_size={self.impl.head_size}" # type: ignore
|
|
s += f", num_heads={self.impl.num_heads}" # type: ignore
|
|
s += f", num_kv_heads={self.impl.num_kv_heads}" # type: ignore
|
|
s += f", scale={self.impl.scale}" # type: ignore
|
|
s += f", backend={self.impl.__class__.__name__}"
|
|
return s
|