vllm/vllm/test_utils.py
2024-02-13 11:32:06 -08:00

42 lines
1.2 KiB
Python

import ray
from vllm.config import ParallelConfig
from vllm.utils import get_open_port
from vllm.worker.worker import init_distributed_environment
def init_test_distributed_environment(
pipeline_parallel_size: int,
tensor_parallel_size: int,
rank: int,
distributed_init_port: str,
) -> None:
parallel_config = ParallelConfig(pipeline_parallel_size,
tensor_parallel_size,
worker_use_ray=True)
distributed_init_method = f"tcp://localhost:{distributed_init_port}"
init_distributed_environment(
parallel_config,
rank,
cupy_port=None,
distributed_init_method=distributed_init_method)
def multi_process_tensor_parallel(
tensor_parallel_size: int,
test_target,
) -> None:
# Using ray helps debugging the error when it failed
# as compared to multiprocessing.
ray.init()
distributed_init_port = get_open_port()
refs = []
for rank in range(tensor_parallel_size):
refs.append(
test_target.remote(tensor_parallel_size, rank,
distributed_init_port))
ray.get(refs)
ray.shutdown()