vllm/vllm/model_executor/layers/pooler.py

57 lines
1.8 KiB
Python

from enum import IntEnum
import torch
import torch.nn as nn
from vllm.model_executor.pooling_metadata import (PoolingMetadata,
PoolingTensors)
from vllm.sequence import EmbeddingSequenceGroupOutput, PoolerOutput
class PoolingType(IntEnum):
"""Enumeration for different types of pooling methods."""
LAST = 0
class Pooler(nn.Module):
"""A layer that pools specific information from hidden states.
This layer does the following:
1. Extracts specific tokens or aggregates data based on pooling method.
2. Normalizes output if specified.
3. Returns structured results as `PoolerOutput`.
Attributes:
pooling_type: The type of pooling to use (LAST, AVERAGE, MAX).
normalize: Whether to normalize the pooled data.
"""
def __init__(self, pooling_type: PoolingType, normalize: bool):
super().__init__()
self.pooling_type = pooling_type
self.normalize = normalize
def forward(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> PoolerOutput:
"""Pools specific information from hidden states based on metadata."""
prompt_lens = PoolingTensors.from_pooling_metadata(
pooling_metadata, hidden_states.device).prompt_lens
if self.pooling_type == PoolingType.LAST:
last_token_flat_indices = torch.cumsum(prompt_lens, dim=0) - 1
pooled_data = hidden_states[last_token_flat_indices]
else:
raise ValueError(f"Invalid pooling type: {self.pooling_type}")
if self.normalize:
pooled_data = nn.functional.normalize(pooled_data, p=2, dim=1)
pooled_outputs = [
EmbeddingSequenceGroupOutput(data.tolist()) for data in pooled_data
]
return PoolerOutput(outputs=pooled_outputs)