108 lines
3.9 KiB
Python
108 lines
3.9 KiB
Python
import socket
|
|
from typing import Optional, Tuple, TYPE_CHECKING
|
|
|
|
from vllm.config import ParallelConfig
|
|
|
|
try:
|
|
import ray
|
|
from ray.air.util.torch_dist import TorchDistributedWorker
|
|
|
|
class RayWorker(TorchDistributedWorker):
|
|
"""Ray wrapper for vllm.worker.Worker, allowing Worker to be
|
|
lazliy initialized after Ray sets CUDA_VISIBLE_DEVICES."""
|
|
|
|
def __init__(self) -> None:
|
|
self.worker = None
|
|
|
|
def init_worker(self, worker_init_fn):
|
|
self.worker = worker_init_fn()
|
|
|
|
def __getattr__(self, name):
|
|
return getattr(self.worker, name)
|
|
|
|
def execute_method(self, method, *args, **kwargs):
|
|
executor = getattr(self, method)
|
|
return executor(*args, **kwargs)
|
|
|
|
except ImportError:
|
|
ray = None
|
|
TorchDistributedWorker = None
|
|
|
|
if TYPE_CHECKING:
|
|
from ray.util.placement_group import PlacementGroup
|
|
|
|
|
|
def get_open_port():
|
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
|
|
s.bind(("", 0))
|
|
return s.getsockname()[1]
|
|
|
|
|
|
def initialize_cluster(
|
|
parallel_config: ParallelConfig,
|
|
engine_use_ray: bool = False,
|
|
ray_address: Optional[str] = None,
|
|
) -> Tuple[str, Optional["PlacementGroup"]]:
|
|
"""Initialize the distributed cluster probably with Ray.
|
|
|
|
Args:
|
|
parallel_config: The configurations for parallel execution.
|
|
engine_use_ray: Whether to use Ray for async engine.
|
|
ray_address: The address of the Ray cluster. If None, uses
|
|
the default Ray cluster address.
|
|
|
|
Returns:
|
|
A tuple of (`distributed_init_method`, `all_stage_devices`). The
|
|
`distributed_init_method` is the address for initializing the
|
|
distributed backend. `all_stage_devices` includes device IDs for
|
|
each worker in each pipeline stage. Each device ID is a tuple of
|
|
(rank, node resource, device id).
|
|
"""
|
|
if parallel_config.worker_use_ray or engine_use_ray:
|
|
if ray is None:
|
|
raise ImportError(
|
|
"Ray is not installed. Please install Ray to use distributed "
|
|
"serving.")
|
|
# Connect to a ray cluster.
|
|
ray.init(address=ray_address, ignore_reinit_error=True)
|
|
|
|
if not parallel_config.worker_use_ray:
|
|
# Initialize cluster locally.
|
|
port = get_open_port()
|
|
# We need to setup the distributed init method to make sure
|
|
# the distributed megatron code (e.g., get world size) works correctly.
|
|
distributed_init_method = f"tcp://localhost:{port}"
|
|
return distributed_init_method, None
|
|
|
|
current_placement_group = ray.util.get_current_placement_group()
|
|
if current_placement_group:
|
|
# We are in a placement group
|
|
bundles = current_placement_group.bundle_specs
|
|
# Verify that we can use the placement group.
|
|
gpu_bundles = 0
|
|
for bundle in bundles:
|
|
assert bundle.get("GPU", 0) > 1, (
|
|
"Placement group bundles cannot have more than 1 GPU")
|
|
if bundle.get("GPU", 0):
|
|
gpu_bundles += 1
|
|
if parallel_config.world_size > gpu_bundles:
|
|
raise ValueError(
|
|
"The number of required GPUs exceeds the total number of "
|
|
"available GPUs in the placement group.")
|
|
else:
|
|
num_gpus_in_cluster = ray.cluster_resources().get("GPU", 0)
|
|
if parallel_config.world_size > num_gpus_in_cluster:
|
|
raise ValueError(
|
|
"The number of required GPUs exceeds the total number of "
|
|
"available GPUs in the cluster.")
|
|
# Create a new placement group
|
|
current_placement_group = ray.util.placement_group([{
|
|
"GPU": 1
|
|
}] * parallel_config.world_size)
|
|
# Wait until PG is ready - this will block until all
|
|
# requested resources are available, and will timeout
|
|
# if they cannot be provisioned.
|
|
ray.get(current_placement_group.ready(), timeout=1800)
|
|
|
|
return None, current_placement_group
|