Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com> Co-authored-by: Nick Hill <nickhill@us.ibm.com>
45 lines
1.4 KiB
Python
45 lines
1.4 KiB
Python
import pytest
|
|
|
|
from .conftest import run_equality_correctness_test
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"common_llm_kwargs",
|
|
[{
|
|
"model": "JackFram/llama-68m",
|
|
|
|
# Skip cuda graph recording for fast test.
|
|
"enforce_eager": True,
|
|
|
|
# Required for spec decode.
|
|
"use_v2_block_manager": True,
|
|
|
|
# speculative model
|
|
"speculative_model": "JackFram/llama-160m",
|
|
|
|
# num speculative tokens
|
|
"num_speculative_tokens": 3,
|
|
}])
|
|
@pytest.mark.parametrize("per_test_common_llm_kwargs", [{}])
|
|
@pytest.mark.parametrize("baseline_llm_kwargs", [{}])
|
|
@pytest.mark.parametrize("batch_size", [1, 8, 32])
|
|
@pytest.mark.parametrize("temperature", [0.1, 1.0])
|
|
@pytest.mark.parametrize(
|
|
"output_len",
|
|
[
|
|
# Use smaller output len for fast test.
|
|
10,
|
|
])
|
|
@pytest.mark.parametrize("seed", [1])
|
|
def test_seeded_consistency(baseline_llm_generator, batch_size: int,
|
|
temperature: float, output_len: int):
|
|
"""Verify outputs are consistent across multiple runs with same seed
|
|
"""
|
|
run_equality_correctness_test(baseline_llm_generator,
|
|
baseline_llm_generator,
|
|
batch_size,
|
|
max_output_len=output_len,
|
|
temperature=temperature,
|
|
seeded=True,
|
|
force_output_len=True)
|