vllm/vllm/model_executor/models/internlm.py
2023-10-29 16:24:18 -07:00

312 lines
11 KiB
Python

# -*- coding: utf-8 -*-
from typing import List, Optional, Tuple
import torch
from torch import nn
from transformers import LlamaConfig
from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.model_executor.parallel_utils.layers import (ColumnParallelLinear,
RowParallelLinear,
VocabParallelEmbedding)
from vllm.model_executor.weight_utils import (
hf_model_weights_iterator, load_padded_tensor_parallel_vocab,
load_tensor_parallel_weights)
from vllm.sequence import SamplerOutput
KVCache = Tuple[torch.Tensor, torch.Tensor]
class InternLMMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
):
super().__init__()
self.gate_up_proj = ColumnParallelLinear(
hidden_size,
2 * intermediate_size,
bias=False,
gather_output=False,
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
input_is_parallel=True,
)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class InternLMAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
bias: bool,
rope_theta: float = 10000,
max_position_embeddings: int = 8192,
):
super().__init__()
self.hidden_size = hidden_size
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
self.total_num_heads = num_heads
assert self.total_num_heads % tensor_model_parallel_world_size == 0
self.num_heads = (self.total_num_heads //
tensor_model_parallel_world_size)
self.head_dim = hidden_size // self.total_num_heads
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = ColumnParallelLinear(
hidden_size,
3 * self.total_num_heads * self.head_dim,
bias=bias,
gather_output=False,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=bias,
input_is_parallel=True,
)
self.attn = PagedAttentionWithRoPE(
self.num_heads,
self.head_dim,
self.scaling,
base=self.rope_theta,
max_position=self.max_position_embeddings,
rotary_dim=self.head_dim)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
k_cache, v_cache = kv_cache
attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
input_metadata, cache_event)
output, _ = self.o_proj(attn_output)
return output
class InternLMDecoderLayer(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
self.self_attn = InternLMAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
bias=config.bias,
rope_theta=rope_theta,
max_position_embeddings=max_position_embeddings,
)
self.mlp = InternLMMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class InternLMModel(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.embed_tokens = VocabParallelEmbedding(
vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
InternLMDecoderLayer(config)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
for i in range(len(self.layers)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.layers[i]
hidden_states = layer(
positions,
hidden_states,
kv_caches[i],
input_metadata,
cache_event,
)
hidden_states = self.norm(hidden_states)
return hidden_states
class InternLMForCausalLM(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.model = InternLMModel(config)
vocab_size = ((config.vocab_size + 63) // 64) * 64
self.lm_head = ColumnParallelLinear(
config.hidden_size,
vocab_size,
bias=False,
gather_output=False,
)
self.sampler = Sampler(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> SamplerOutput:
hidden_states = self.model(input_ids, positions, kv_caches,
input_metadata, cache_events)
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
input_metadata)
return next_tokens
_column_parallel_weights = [
"qkv_proj.weight", "gate_proj.weight", "up_proj.weight"
]
_row_parallel_weights = ["o_proj.weight", "down_proj.weight"]
def load_weights(self,
model_name_or_path: str,
cache_dir: Optional[str] = None,
load_format: str = "auto",
revision: Optional[str] = None):
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
if "embed_tokens" in name or "lm_head" in name:
param = state_dict[name]
load_padded_tensor_parallel_vocab(param, loaded_weight,
tensor_model_parallel_rank)
continue
is_attention_weight = False
for stride_id, att_weight_name in enumerate(
["q_proj", "k_proj", "v_proj"]):
if att_weight_name not in name:
continue
param = state_dict[name.replace(att_weight_name, "qkv_proj")]
shard_size = param.shape[0] // 3
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank:shard_size *
(tensor_model_parallel_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
is_attention_weight = True
break
if is_attention_weight:
continue
is_gate_up_weight = False
for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
if weight_name not in name:
continue
param = state_dict[name.replace(weight_name, "gate_up_proj")]
shard_size = param.shape[0] // 2
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank:shard_size *
(tensor_model_parallel_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
param_slice.copy_(loaded_weight)
is_gate_up_weight = True
break
if is_gate_up_weight:
continue
param = state_dict[name]
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)