vllm/vllm/executor/neuron_executor.py

110 lines
3.9 KiB
Python

from typing import List, Set, Tuple
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
from vllm.logger import init_logger
from vllm.lora.request import LoRARequest
from vllm.sequence import ExecuteModelRequest, SamplerOutput
from vllm.utils import make_async
logger = init_logger(__name__)
class NeuronExecutor(ExecutorBase):
def _init_executor(self) -> None:
assert (self.lora_config is
None), "LoRA is not supported for Neuron backend."
assert (not self.speculative_config
), "Speculative decoding not yet supported for Neuron backend."
# Instantiate the worker and load the model to the device.
self._init_worker()
def _init_worker(self):
from vllm.worker.neuron_worker import NeuronWorker
self.driver_worker = NeuronWorker(
self.model_config,
self.parallel_config,
self.scheduler_config,
self.device_config,
self.cache_config,
)
self.driver_worker.init_device()
self.driver_worker.load_model()
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of available KV blocks by invoking the
underlying worker.
"""
return self.driver_worker.determine_num_available_blocks()
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Initialize the KV cache by invoking the underlying worker.
"""
self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
def execute_model(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
assert (not execute_model_req.blocks_to_swap_in
and not execute_model_req.blocks_to_swap_out
and not execute_model_req.blocks_to_copy), (
"Cache operations are not supported for Neuron backend.")
assert execute_model_req.num_lookahead_slots == 0, (
"lookahead not supported for Neuron backend.")
output = self.driver_worker.execute_model(execute_model_req)
return output
def add_lora(self, lora_request: LoRARequest) -> bool:
return self.driver_worker.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
return self.driver_worker.remove_lora(lora_id)
def pin_lora(self, lora_id: int) -> bool:
return self.driver_worker.pin_lora(lora_id)
def list_loras(self) -> Set[int]:
return self.driver_worker.list_loras()
def add_prompt_adapter(self, prompt_adapter_request) -> bool:
raise NotImplementedError(
"Soft prompt is currently not supported by the Neuron backend.")
def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
raise NotImplementedError(
"Soft prompt is currently not supported by the Neuron backend.")
def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
raise NotImplementedError(
"Soft prompt is currently not supported by the Neuron backend.")
def list_prompt_adapters(self) -> Set[int]:
raise NotImplementedError(
"Soft prompt is currently not supported by the Neuron backend.")
def check_health(self) -> None:
# NeuronExecutor will always be healthy as long as
# it's running.
return
class NeuronExecutorAsync(NeuronExecutor, ExecutorAsyncBase):
async def execute_model_async(
self,
execute_model_req: ExecuteModelRequest,
) -> List[SamplerOutput]:
output = await make_async(
self.driver_worker.execute_model
)(seq_group_metadata_list=execute_model_req.seq_group_metadata_list, )
return output
async def check_health_async(self) -> None:
# NeuronExecutor will always be healthy as long as
# it's running.
return