110 lines
3.9 KiB
Python
110 lines
3.9 KiB
Python
from typing import List, Set, Tuple
|
|
|
|
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
|
|
from vllm.logger import init_logger
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.sequence import ExecuteModelRequest, SamplerOutput
|
|
from vllm.utils import make_async
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class NeuronExecutor(ExecutorBase):
|
|
|
|
def _init_executor(self) -> None:
|
|
assert (self.lora_config is
|
|
None), "LoRA is not supported for Neuron backend."
|
|
assert (not self.speculative_config
|
|
), "Speculative decoding not yet supported for Neuron backend."
|
|
|
|
# Instantiate the worker and load the model to the device.
|
|
self._init_worker()
|
|
|
|
def _init_worker(self):
|
|
from vllm.worker.neuron_worker import NeuronWorker
|
|
|
|
self.driver_worker = NeuronWorker(
|
|
self.model_config,
|
|
self.parallel_config,
|
|
self.scheduler_config,
|
|
self.device_config,
|
|
self.cache_config,
|
|
)
|
|
self.driver_worker.init_device()
|
|
self.driver_worker.load_model()
|
|
|
|
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
|
"""Determine the number of available KV blocks by invoking the
|
|
underlying worker.
|
|
"""
|
|
return self.driver_worker.determine_num_available_blocks()
|
|
|
|
def initialize_cache(self, num_gpu_blocks: int,
|
|
num_cpu_blocks: int) -> None:
|
|
"""Initialize the KV cache by invoking the underlying worker.
|
|
"""
|
|
self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
|
|
|
|
def execute_model(
|
|
self,
|
|
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
|
|
assert (not execute_model_req.blocks_to_swap_in
|
|
and not execute_model_req.blocks_to_swap_out
|
|
and not execute_model_req.blocks_to_copy), (
|
|
"Cache operations are not supported for Neuron backend.")
|
|
assert execute_model_req.num_lookahead_slots == 0, (
|
|
"lookahead not supported for Neuron backend.")
|
|
|
|
output = self.driver_worker.execute_model(execute_model_req)
|
|
return output
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
return self.driver_worker.add_lora(lora_request)
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
return self.driver_worker.remove_lora(lora_id)
|
|
|
|
def pin_lora(self, lora_id: int) -> bool:
|
|
return self.driver_worker.pin_lora(lora_id)
|
|
|
|
def list_loras(self) -> Set[int]:
|
|
return self.driver_worker.list_loras()
|
|
|
|
def add_prompt_adapter(self, prompt_adapter_request) -> bool:
|
|
raise NotImplementedError(
|
|
"Soft prompt is currently not supported by the Neuron backend.")
|
|
|
|
def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
|
|
raise NotImplementedError(
|
|
"Soft prompt is currently not supported by the Neuron backend.")
|
|
|
|
def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
|
|
raise NotImplementedError(
|
|
"Soft prompt is currently not supported by the Neuron backend.")
|
|
|
|
def list_prompt_adapters(self) -> Set[int]:
|
|
raise NotImplementedError(
|
|
"Soft prompt is currently not supported by the Neuron backend.")
|
|
|
|
def check_health(self) -> None:
|
|
# NeuronExecutor will always be healthy as long as
|
|
# it's running.
|
|
return
|
|
|
|
|
|
class NeuronExecutorAsync(NeuronExecutor, ExecutorAsyncBase):
|
|
|
|
async def execute_model_async(
|
|
self,
|
|
execute_model_req: ExecuteModelRequest,
|
|
) -> List[SamplerOutput]:
|
|
output = await make_async(
|
|
self.driver_worker.execute_model
|
|
)(seq_group_metadata_list=execute_model_req.seq_group_metadata_list, )
|
|
return output
|
|
|
|
async def check_health_async(self) -> None:
|
|
# NeuronExecutor will always be healthy as long as
|
|
# it's running.
|
|
return
|