168 lines
5.0 KiB
Python
168 lines
5.0 KiB
Python
from typing import List, Optional
|
|
|
|
import torch
|
|
|
|
from vllm.utils import is_pin_memory_available
|
|
|
|
|
|
class LoRALayerWeights:
|
|
"""LoRA weights for a layer composed of two low rank matrixes."""
|
|
|
|
def __init__(
|
|
self,
|
|
module_name: str,
|
|
rank: int,
|
|
lora_alpha: int,
|
|
lora_a: torch.Tensor,
|
|
lora_b: torch.Tensor,
|
|
embeddings_tensor: Optional[torch.Tensor] = None,
|
|
scaling: Optional[float] = None,
|
|
) -> None:
|
|
self.module_name = module_name
|
|
self.rank = rank
|
|
self.lora_alpha = lora_alpha
|
|
self.lora_a = lora_a
|
|
self.lora_b = lora_b
|
|
self.embeddings_tensor = embeddings_tensor
|
|
|
|
if scaling is None:
|
|
self.scaling = self.lora_alpha / self.rank
|
|
else:
|
|
self.scaling = scaling
|
|
|
|
def optimize(self) -> "LoRALayerWeights":
|
|
"""Optimize the LoRA by merging the scaling into lora_b."""
|
|
if self.scaling == 1:
|
|
return self
|
|
self.lora_b *= self.scaling
|
|
self.scaling = 1
|
|
return self
|
|
|
|
@property
|
|
def input_dim(self) -> int:
|
|
return self.lora_a.shape[0]
|
|
|
|
@property
|
|
def output_dim(self) -> int:
|
|
return self.lora_b.shape[1]
|
|
|
|
@property
|
|
def is_packed(self) -> bool:
|
|
return False
|
|
|
|
@property
|
|
def extra_vocab_size(self) -> int:
|
|
return self.embeddings_tensor.shape[
|
|
0] if self.embeddings_tensor is not None else 0
|
|
|
|
@classmethod
|
|
def create_dummy_lora_weights(
|
|
cls,
|
|
module_name: str,
|
|
input_dim: int,
|
|
output_dim: int,
|
|
rank: int,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
embeddings_tensor_dim: Optional[int] = None) -> "LoRALayerWeights":
|
|
pin_memory = str(device) == "cpu" and is_pin_memory_available()
|
|
lora_a = torch.zeros([input_dim, rank],
|
|
dtype=dtype,
|
|
device=device,
|
|
pin_memory=pin_memory)
|
|
lora_b = torch.zeros([rank, output_dim],
|
|
dtype=dtype,
|
|
device=device,
|
|
pin_memory=pin_memory)
|
|
embeddings_tensor = torch.rand(
|
|
10,
|
|
embeddings_tensor_dim,
|
|
dtype=dtype,
|
|
device=device,
|
|
pin_memory=pin_memory) if embeddings_tensor_dim else None
|
|
return cls(
|
|
module_name,
|
|
rank=rank,
|
|
lora_alpha=1,
|
|
lora_a=lora_a,
|
|
lora_b=lora_b,
|
|
embeddings_tensor=embeddings_tensor,
|
|
)
|
|
|
|
|
|
class PackedLoRALayerWeights(LoRALayerWeights):
|
|
"""LoRA used for packed layers (eg. qkv_proj)."""
|
|
|
|
def __init__(
|
|
self,
|
|
module_name: str,
|
|
rank: int,
|
|
lora_alphas: List[Optional[int]],
|
|
lora_a: List[Optional[torch.Tensor]],
|
|
lora_b: List[Optional[torch.Tensor]],
|
|
scaling: Optional[List[float]] = None,
|
|
) -> None:
|
|
super().__init__(
|
|
module_name=module_name,
|
|
rank=rank,
|
|
lora_alpha=0,
|
|
lora_a=lora_a,
|
|
lora_b=lora_b,
|
|
scaling=scaling, # type: ignore
|
|
embeddings_tensor=None,
|
|
)
|
|
self.lora_alphas = lora_alphas
|
|
if scaling is None:
|
|
self.scaling = [ # type: ignore
|
|
lora_alpha / self.rank # type: ignore # noqa
|
|
for lora_alpha in self.lora_alphas
|
|
]
|
|
|
|
@classmethod
|
|
def pack(
|
|
cls, loras: List[Optional["LoRALayerWeights"]]
|
|
) -> "PackedLoRALayerWeights":
|
|
"""Pack a list of LoRAs into a single LoRA.
|
|
|
|
If LoRA is None, it signifies that the submodule does not have a LoRA.
|
|
"""
|
|
first_lora = next(lora for lora in loras if lora is not None)
|
|
for lora in loras:
|
|
if lora is None:
|
|
continue
|
|
lora.optimize()
|
|
rank = first_lora.rank
|
|
module_name = first_lora.module_name
|
|
obj = cls(
|
|
module_name,
|
|
rank,
|
|
[lora.lora_alpha if lora is not None else None for lora in loras],
|
|
[lora.lora_a if lora is not None else None for lora in loras],
|
|
[lora.lora_b if lora is not None else None for lora in loras],
|
|
scaling=[
|
|
1 if lora is not None else None # type: ignore
|
|
for lora in loras
|
|
])
|
|
return obj
|
|
|
|
def optimize(self) -> "PackedLoRALayerWeights":
|
|
"""Optimize the LoRA by merging the scaling into lora_b."""
|
|
for i in range(len(self.lora_b)):
|
|
if self.scaling[i] == 1 or self.lora_b[i] is None: # type: ignore
|
|
continue
|
|
self.lora_b[i] *= self.scaling[i] # type: ignore
|
|
self.scaling[i] = 1 # type: ignore
|
|
return self
|
|
|
|
@property
|
|
def input_dim(self) -> int:
|
|
raise NotImplementedError()
|
|
|
|
@property
|
|
def output_dim(self) -> int:
|
|
raise NotImplementedError()
|
|
|
|
@property
|
|
def is_packed(self) -> bool:
|
|
return True
|