vllm/vllm/model_executor/layers/quantization/fp8.py
Robert Shaw b675069d74
[ Misc ] Refactor Marlin Python Utilities (#6082)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
2024-07-11 15:40:11 +00:00

432 lines
18 KiB
Python

from typing import Any, Dict, List, Optional
import torch
from torch.nn import Module
from torch.nn.parameter import Parameter
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEMethodBase,
fused_moe)
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
apply_fp8_marlin_linear, prepare_fp8_layer_for_marlin)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
all_close_1d, apply_fp8_linear, create_per_tensor_scale_param,
cutlass_fp8_supported, per_tensor_dequantize, requantize_with_max_scale)
from vllm.model_executor.utils import set_weight_attrs
from vllm.platforms import current_platform
from vllm.utils import print_warning_once
ACTIVATION_SCHEMES = ["static", "dynamic"]
logger = init_logger(__name__)
class Fp8Config(QuantizationConfig):
"""Config class for FP8."""
def __init__(
self,
is_checkpoint_fp8_serialized: bool = False,
activation_scheme: str = "dynamic",
) -> None:
self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
if is_checkpoint_fp8_serialized:
logger.warning("Detected fp8 checkpoint. Please note that the "
"format is experimental and subject to change.")
if activation_scheme not in ACTIVATION_SCHEMES:
raise ValueError(
f"Unsupported activation scheme {activation_scheme}")
self.activation_scheme = activation_scheme
@classmethod
def get_name(cls) -> str:
return "fp8"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.bfloat16, torch.half]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> List[str]:
return []
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "Fp8Config":
quant_method = cls.get_from_keys(config, ["quant_method"])
is_checkpoint_fp8_serialized = ("fp8" in quant_method)
activation_scheme = cls.get_from_keys(config, ["activation_scheme"])
return cls(is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized,
activation_scheme=activation_scheme)
def get_quant_method(
self, layer: torch.nn.Module) -> Optional["QuantizeMethodBase"]:
from vllm.attention.layer import Attention # Avoid circular import
if isinstance(layer, LinearBase):
return Fp8LinearMethod(self)
elif isinstance(layer, FusedMoE):
return Fp8MoEMethod(self)
elif isinstance(layer, Attention):
return Fp8KVCacheMethod(self)
return None
def get_scaled_act_names(self) -> List[str]:
return []
class Fp8LinearMethod(LinearMethodBase):
"""Linear method for FP8.
Supports loading FP8 checkpoints with static weight scale and
dynamic/static activation scale.
Also supports loading quantized FP16/BF16 model checkpoints with dynamic
activation scaling. The weight scaling factor will be initialized after
the model weights are loaded.
Limitations:
1. Only support per-tensor quantization due to torch._scaled_mm support.
2. Only support float8_e4m3fn data type due to the limitation of
torch._scaled_mm (https://github.com/pytorch/pytorch/blob/2e48b39603411a41c5025efbe52f89560b827825/aten/src/ATen/native/cuda/Blas.cpp#L854-L856)
Args:
quant_config: The quantization config.
"""
def __init__(self, quant_config: Fp8Config):
self.quant_config = quant_config
self.cutlass_fp8_supported = cutlass_fp8_supported()
# For GPUs that lack FP8 hardware support, we can leverage the Marlin
# kernel for fast weight-only FP8 quantization
capability = current_platform.get_device_capability()
capability = capability[0] * 10 + capability[1]
self.use_marlin = capability < 89
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
del input_size, output_size
output_size_per_partition = sum(output_partition_sizes)
layer.logical_widths = output_partition_sizes
layer.input_size_per_partition = input_size_per_partition
layer.output_size_per_partition = output_size_per_partition
layer.orig_dtype = params_dtype
# WEIGHT
weight_dtype = (torch.float8_e4m3fn
if self.quant_config.is_checkpoint_fp8_serialized else
params_dtype)
weight = Parameter(torch.empty(output_size_per_partition,
input_size_per_partition,
dtype=weight_dtype),
requires_grad=False)
layer.register_parameter("weight", weight)
set_weight_attrs(weight, {
**extra_weight_attrs,
"input_dim": 1,
"output_dim": 0,
})
# If checkpoint is serialized fp8, load them.
# Otherwise, wait until process_weights_after_loading.
if self.quant_config.is_checkpoint_fp8_serialized:
# WEIGHT SCALE
scale = create_per_tensor_scale_param(output_partition_sizes,
**extra_weight_attrs)
layer.register_parameter("weight_scale", scale)
# INPUT ACTIVATION SCALE
if self.quant_config.activation_scheme == "static":
scale = create_per_tensor_scale_param(output_partition_sizes,
**extra_weight_attrs)
layer.register_parameter("input_scale", scale)
def process_weights_after_loading(self, layer: Module) -> None:
# If checkpoint not serialized fp8, quantize the weights.
if not self.quant_config.is_checkpoint_fp8_serialized:
qweight, weight_scale = ops.scaled_fp8_quant(layer.weight,
scale=None)
# Update the layer with the new values.
layer.weight = Parameter(qweight.t(), requires_grad=False)
layer.weight_scale = Parameter(weight_scale, requires_grad=False)
layer.input_scale = None
# If checkpoint is fp8, requantize the separately quantized logical
# weights into a single fp8 weight with a single weight scale.
else:
# Dequant -> Quant with max scale.
max_w_scale, weight = requantize_with_max_scale(
weight=layer.weight,
weight_scale=layer.weight_scale,
logical_widths=layer.logical_widths,
)
# Update layer with new values.
layer.weight = Parameter(weight.t(), requires_grad=False)
layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
if self.quant_config.activation_scheme == "static":
layer.input_scale = Parameter(layer.input_scale.max(),
requires_grad=False)
else:
layer.input_scale = None
if self.use_marlin:
prepare_fp8_layer_for_marlin(layer)
# Activations not quantized for marlin.
del layer.input_scale
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
if self.use_marlin:
return apply_fp8_marlin_linear(
input=x,
weight=layer.weight,
weight_scale=layer.weight_scale,
workspace=layer.workspace,
size_n=layer.output_size_per_partition,
size_k=layer.input_size_per_partition,
bias=bias)
return apply_fp8_linear(
input=x,
weight=layer.weight,
weight_scale=layer.weight_scale,
input_scale=layer.input_scale,
bias=bias,
cutlass_fp8_supported=self.cutlass_fp8_supported)
class Fp8MoEMethod(FusedMoEMethodBase):
"""MoE method for FP8.
Supports loading FP8 checkpoints with static weight scale and
dynamic/static activation scale.
Also supports loading quantized FP16/BF16 model checkpoints with dynamic
activation scaling. The weight scaling factor will be initialized after
the model weights are loaded.
Args:
quant_config: The quantization config.
"""
def __init__(self, quant_config: Fp8Config):
self.quant_config = quant_config
def create_weights(self, layer: Module, num_experts: int, hidden_size: int,
intermediate_size: int, params_dtype: torch.dtype,
**extra_weight_attrs):
if self.quant_config.is_checkpoint_fp8_serialized:
params_dtype = torch.float8_e4m3fn
# WEIGHTS
w13_weight = torch.nn.Parameter(torch.empty(num_experts,
2 * intermediate_size,
hidden_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
w2_weight = torch.nn.Parameter(torch.empty(num_experts,
hidden_size,
intermediate_size,
dtype=params_dtype),
requires_grad=False)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
# WEIGHT_SCALES
# Allocate 2 scales for w1 and w3 respectively.
# They will be combined to a single scale after weight loading.
w13_scale = torch.nn.Parameter(torch.ones(num_experts,
2,
dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w13_scale", w13_scale)
w2_scale = torch.nn.Parameter(torch.ones(num_experts,
dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w2_scale", w2_scale)
# If loading fp8 checkpoint, pass the weight loaders.
# If loading an fp16 checkpoint, do not (we will quantize in
# process_weights_after_loading()
if self.quant_config.is_checkpoint_fp8_serialized:
set_weight_attrs(w13_scale, extra_weight_attrs)
set_weight_attrs(w2_scale, extra_weight_attrs)
# INPUT_SCALES
if self.quant_config.activation_scheme == "static":
if not self.quant_config.is_checkpoint_fp8_serialized:
raise ValueError(
"Found static activation scheme for checkpoint that "
"was not serialized fp8.")
a13_scale = torch.nn.Parameter(torch.ones(num_experts,
dtype=torch.float32),
requires_grad=False)
layer.register_parameter("a13_scale", a13_scale)
set_weight_attrs(a13_scale, extra_weight_attrs)
a2_scale = torch.nn.Parameter(torch.ones(num_experts,
dtype=torch.float32),
requires_grad=False)
layer.register_parameter("a2_scale", a2_scale)
set_weight_attrs(a2_scale, extra_weight_attrs)
else:
layer.a13_scale = None
layer.a2_scale = None
def process_weights_after_loading(self, layer: Module) -> None:
# If checkpoint is fp16, quantize in place.
if not self.quant_config.is_checkpoint_fp8_serialized:
w13_weight = torch.empty_like(layer.w13_weight.data,
dtype=torch.float8_e4m3fn)
w2_weight = torch.empty_like(layer.w2_weight.data,
dtype=torch.float8_e4m3fn)
# Re-initialize w13_scale because we directly quantize
# merged w13 weights and generate a single scaling factor.
layer.w13_scale = torch.nn.Parameter(torch.ones(
layer.num_experts,
dtype=torch.float32,
device=w13_weight.device),
requires_grad=False)
for expert in range(layer.num_experts):
w13_weight[expert, :, :], layer.w13_scale[
expert] = ops.scaled_fp8_quant(
layer.w13_weight.data[expert, :, :])
w2_weight[expert, :, :], layer.w2_scale[
expert] = ops.scaled_fp8_quant(
layer.w2_weight.data[expert, :, :])
layer.w13_weight = torch.nn.Parameter(w13_weight,
requires_grad=False)
layer.w2_weight = torch.nn.Parameter(w2_weight,
requires_grad=False)
return
# If checkpoint is fp8, we need to handle that the
# MoE kernels require single activation scale and single weight
# scale for w13 per expert.
else:
# Fp8 moe kernels require a single activation scale.
# We take the max of all the scales in case they differ.
if self.quant_config.activation_scheme == "static":
if layer.a13_scale is None or layer.a2_scale is None:
raise ValueError(
"QuantConfig has static quantization, but found "
"activation scales are None.")
if (not all_close_1d(layer.a13_scale)
or not all_close_1d(layer.a2_scale)):
print_warning_once(
"Found input_scales that are not equal for "
"fp8 MoE layer. Using the maximum across experts "
"for each layer. ")
layer.a13_scale = torch.nn.Parameter(layer.a13_scale.max(),
requires_grad=False)
layer.a2_scale = torch.nn.Parameter(layer.a2_scale.max(),
requires_grad=False)
# Fp8 moe kernel needs single weight scale for w13 per expert.
# We take the max then dequant and requant each expert.
assert layer.w13_scale is not None
shard_size = layer.intermediate_size_per_partition
max_w13_scales = layer.w13_scale.max(dim=1).values
for expert_id in range(layer.num_experts):
start = 0
for shard_id in range(2):
dq_weight = per_tensor_dequantize(
layer.w13_weight[expert_id][start:start +
shard_size, :],
layer.w13_scale[expert_id][shard_id])
layer.w13_weight[expert_id][
start:start + shard_size, :], _ = ops.scaled_fp8_quant(
dq_weight, max_w13_scales[expert_id])
start += shard_size
layer.w13_scale = torch.nn.Parameter(max_w13_scales,
requires_grad=False)
return
def apply(self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool = True) -> torch.Tensor:
return fused_moe(x,
layer.w13_weight,
layer.w2_weight,
router_logits,
top_k,
renormalize=renormalize,
inplace=True,
use_fp8=True,
w1_scale=layer.w13_scale,
w2_scale=layer.w2_scale,
a1_scale=layer.a13_scale,
a2_scale=layer.a2_scale)
class Fp8KVCacheMethod(QuantizeMethodBase):
"""Supports loading kv-cache scaling factors from FP8 checkpoints.
"""
def __init__(self, quant_config: Fp8Config):
self.quant_config = quant_config
def create_weights(self, layer: torch.nn.Module):
"""Create "weight" (aka kv_scale) for an attention layer.
Args:
layer: The layer that is using the QuantizeMethodBase factory.
"""
# Initialize the KV cache scale to 1.0 as the default value.
# If the kv_scale appears in the checkpoint, it will be
# overwritten when loading weights.
layer.kv_scale = Parameter(torch.tensor(1.0), requires_grad=False)
def apply(self, layer: torch.nn.Module) -> torch.Tensor:
raise RuntimeError("Fp8KVCacheMethod.apply should not be called.")
def process_weights_after_loading(self, layer: Module) -> None:
# If the kv-cache dtype is auto, we enforce the kv-scale to be 1.0
# regardless whether the kv-scale is available in the checkpoint.
if layer.kv_cache_dtype != "auto":
kv_scale = layer.kv_scale.to("cpu").tolist()
if not isinstance(kv_scale, float):
raise ValueError("Only support per-tensor scaling factor "
"for fp8 KV cache")
layer._kv_scale = kv_scale
if layer._kv_scale == 1.0 and "e5m2" not in layer.kv_cache_dtype:
print_warning_once(
"Using KV cache scaling factor 1.0 for fp8_e4m3. This may "
"cause accuracy issues. Please make sure kv-cache scaling "
"factor is available in the fp8 checkpoint.")
del layer.kv_scale