432 lines
18 KiB
Python
432 lines
18 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
import torch
|
|
from torch.nn import Module
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from vllm import _custom_ops as ops
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEMethodBase,
|
|
fused_moe)
|
|
from vllm.model_executor.layers.linear import LinearBase, LinearMethodBase
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig, QuantizeMethodBase)
|
|
from vllm.model_executor.layers.quantization.utils.marlin_utils_fp8 import (
|
|
apply_fp8_marlin_linear, prepare_fp8_layer_for_marlin)
|
|
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
|
all_close_1d, apply_fp8_linear, create_per_tensor_scale_param,
|
|
cutlass_fp8_supported, per_tensor_dequantize, requantize_with_max_scale)
|
|
from vllm.model_executor.utils import set_weight_attrs
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils import print_warning_once
|
|
|
|
ACTIVATION_SCHEMES = ["static", "dynamic"]
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class Fp8Config(QuantizationConfig):
|
|
"""Config class for FP8."""
|
|
|
|
def __init__(
|
|
self,
|
|
is_checkpoint_fp8_serialized: bool = False,
|
|
activation_scheme: str = "dynamic",
|
|
) -> None:
|
|
self.is_checkpoint_fp8_serialized = is_checkpoint_fp8_serialized
|
|
if is_checkpoint_fp8_serialized:
|
|
logger.warning("Detected fp8 checkpoint. Please note that the "
|
|
"format is experimental and subject to change.")
|
|
if activation_scheme not in ACTIVATION_SCHEMES:
|
|
raise ValueError(
|
|
f"Unsupported activation scheme {activation_scheme}")
|
|
self.activation_scheme = activation_scheme
|
|
|
|
@classmethod
|
|
def get_name(cls) -> str:
|
|
return "fp8"
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
|
return [torch.bfloat16, torch.half]
|
|
|
|
@classmethod
|
|
def get_min_capability(cls) -> int:
|
|
return 80
|
|
|
|
@classmethod
|
|
def get_config_filenames(cls) -> List[str]:
|
|
return []
|
|
|
|
@classmethod
|
|
def from_config(cls, config: Dict[str, Any]) -> "Fp8Config":
|
|
quant_method = cls.get_from_keys(config, ["quant_method"])
|
|
is_checkpoint_fp8_serialized = ("fp8" in quant_method)
|
|
activation_scheme = cls.get_from_keys(config, ["activation_scheme"])
|
|
return cls(is_checkpoint_fp8_serialized=is_checkpoint_fp8_serialized,
|
|
activation_scheme=activation_scheme)
|
|
|
|
def get_quant_method(
|
|
self, layer: torch.nn.Module) -> Optional["QuantizeMethodBase"]:
|
|
from vllm.attention.layer import Attention # Avoid circular import
|
|
|
|
if isinstance(layer, LinearBase):
|
|
return Fp8LinearMethod(self)
|
|
elif isinstance(layer, FusedMoE):
|
|
return Fp8MoEMethod(self)
|
|
elif isinstance(layer, Attention):
|
|
return Fp8KVCacheMethod(self)
|
|
return None
|
|
|
|
def get_scaled_act_names(self) -> List[str]:
|
|
return []
|
|
|
|
|
|
class Fp8LinearMethod(LinearMethodBase):
|
|
"""Linear method for FP8.
|
|
Supports loading FP8 checkpoints with static weight scale and
|
|
dynamic/static activation scale.
|
|
|
|
Also supports loading quantized FP16/BF16 model checkpoints with dynamic
|
|
activation scaling. The weight scaling factor will be initialized after
|
|
the model weights are loaded.
|
|
|
|
Limitations:
|
|
1. Only support per-tensor quantization due to torch._scaled_mm support.
|
|
2. Only support float8_e4m3fn data type due to the limitation of
|
|
torch._scaled_mm (https://github.com/pytorch/pytorch/blob/2e48b39603411a41c5025efbe52f89560b827825/aten/src/ATen/native/cuda/Blas.cpp#L854-L856)
|
|
|
|
Args:
|
|
quant_config: The quantization config.
|
|
"""
|
|
|
|
def __init__(self, quant_config: Fp8Config):
|
|
self.quant_config = quant_config
|
|
self.cutlass_fp8_supported = cutlass_fp8_supported()
|
|
|
|
# For GPUs that lack FP8 hardware support, we can leverage the Marlin
|
|
# kernel for fast weight-only FP8 quantization
|
|
capability = current_platform.get_device_capability()
|
|
capability = capability[0] * 10 + capability[1]
|
|
self.use_marlin = capability < 89
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
input_size_per_partition: int,
|
|
output_partition_sizes: List[int],
|
|
input_size: int,
|
|
output_size: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
):
|
|
del input_size, output_size
|
|
output_size_per_partition = sum(output_partition_sizes)
|
|
|
|
layer.logical_widths = output_partition_sizes
|
|
|
|
layer.input_size_per_partition = input_size_per_partition
|
|
layer.output_size_per_partition = output_size_per_partition
|
|
layer.orig_dtype = params_dtype
|
|
|
|
# WEIGHT
|
|
weight_dtype = (torch.float8_e4m3fn
|
|
if self.quant_config.is_checkpoint_fp8_serialized else
|
|
params_dtype)
|
|
weight = Parameter(torch.empty(output_size_per_partition,
|
|
input_size_per_partition,
|
|
dtype=weight_dtype),
|
|
requires_grad=False)
|
|
layer.register_parameter("weight", weight)
|
|
set_weight_attrs(weight, {
|
|
**extra_weight_attrs,
|
|
"input_dim": 1,
|
|
"output_dim": 0,
|
|
})
|
|
|
|
# If checkpoint is serialized fp8, load them.
|
|
# Otherwise, wait until process_weights_after_loading.
|
|
if self.quant_config.is_checkpoint_fp8_serialized:
|
|
# WEIGHT SCALE
|
|
scale = create_per_tensor_scale_param(output_partition_sizes,
|
|
**extra_weight_attrs)
|
|
layer.register_parameter("weight_scale", scale)
|
|
|
|
# INPUT ACTIVATION SCALE
|
|
if self.quant_config.activation_scheme == "static":
|
|
scale = create_per_tensor_scale_param(output_partition_sizes,
|
|
**extra_weight_attrs)
|
|
layer.register_parameter("input_scale", scale)
|
|
|
|
def process_weights_after_loading(self, layer: Module) -> None:
|
|
# If checkpoint not serialized fp8, quantize the weights.
|
|
if not self.quant_config.is_checkpoint_fp8_serialized:
|
|
qweight, weight_scale = ops.scaled_fp8_quant(layer.weight,
|
|
scale=None)
|
|
|
|
# Update the layer with the new values.
|
|
layer.weight = Parameter(qweight.t(), requires_grad=False)
|
|
layer.weight_scale = Parameter(weight_scale, requires_grad=False)
|
|
layer.input_scale = None
|
|
|
|
# If checkpoint is fp8, requantize the separately quantized logical
|
|
# weights into a single fp8 weight with a single weight scale.
|
|
else:
|
|
# Dequant -> Quant with max scale.
|
|
max_w_scale, weight = requantize_with_max_scale(
|
|
weight=layer.weight,
|
|
weight_scale=layer.weight_scale,
|
|
logical_widths=layer.logical_widths,
|
|
)
|
|
|
|
# Update layer with new values.
|
|
layer.weight = Parameter(weight.t(), requires_grad=False)
|
|
layer.weight_scale = Parameter(max_w_scale, requires_grad=False)
|
|
if self.quant_config.activation_scheme == "static":
|
|
layer.input_scale = Parameter(layer.input_scale.max(),
|
|
requires_grad=False)
|
|
else:
|
|
layer.input_scale = None
|
|
|
|
if self.use_marlin:
|
|
prepare_fp8_layer_for_marlin(layer)
|
|
# Activations not quantized for marlin.
|
|
del layer.input_scale
|
|
|
|
def apply(self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
|
|
if self.use_marlin:
|
|
return apply_fp8_marlin_linear(
|
|
input=x,
|
|
weight=layer.weight,
|
|
weight_scale=layer.weight_scale,
|
|
workspace=layer.workspace,
|
|
size_n=layer.output_size_per_partition,
|
|
size_k=layer.input_size_per_partition,
|
|
bias=bias)
|
|
|
|
return apply_fp8_linear(
|
|
input=x,
|
|
weight=layer.weight,
|
|
weight_scale=layer.weight_scale,
|
|
input_scale=layer.input_scale,
|
|
bias=bias,
|
|
cutlass_fp8_supported=self.cutlass_fp8_supported)
|
|
|
|
|
|
class Fp8MoEMethod(FusedMoEMethodBase):
|
|
"""MoE method for FP8.
|
|
Supports loading FP8 checkpoints with static weight scale and
|
|
dynamic/static activation scale.
|
|
|
|
Also supports loading quantized FP16/BF16 model checkpoints with dynamic
|
|
activation scaling. The weight scaling factor will be initialized after
|
|
the model weights are loaded.
|
|
|
|
Args:
|
|
quant_config: The quantization config.
|
|
"""
|
|
|
|
def __init__(self, quant_config: Fp8Config):
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(self, layer: Module, num_experts: int, hidden_size: int,
|
|
intermediate_size: int, params_dtype: torch.dtype,
|
|
**extra_weight_attrs):
|
|
|
|
if self.quant_config.is_checkpoint_fp8_serialized:
|
|
params_dtype = torch.float8_e4m3fn
|
|
|
|
# WEIGHTS
|
|
w13_weight = torch.nn.Parameter(torch.empty(num_experts,
|
|
2 * intermediate_size,
|
|
hidden_size,
|
|
dtype=params_dtype),
|
|
requires_grad=False)
|
|
layer.register_parameter("w13_weight", w13_weight)
|
|
set_weight_attrs(w13_weight, extra_weight_attrs)
|
|
|
|
w2_weight = torch.nn.Parameter(torch.empty(num_experts,
|
|
hidden_size,
|
|
intermediate_size,
|
|
dtype=params_dtype),
|
|
requires_grad=False)
|
|
layer.register_parameter("w2_weight", w2_weight)
|
|
set_weight_attrs(w2_weight, extra_weight_attrs)
|
|
|
|
# WEIGHT_SCALES
|
|
# Allocate 2 scales for w1 and w3 respectively.
|
|
# They will be combined to a single scale after weight loading.
|
|
w13_scale = torch.nn.Parameter(torch.ones(num_experts,
|
|
2,
|
|
dtype=torch.float32),
|
|
requires_grad=False)
|
|
layer.register_parameter("w13_scale", w13_scale)
|
|
|
|
w2_scale = torch.nn.Parameter(torch.ones(num_experts,
|
|
dtype=torch.float32),
|
|
requires_grad=False)
|
|
layer.register_parameter("w2_scale", w2_scale)
|
|
|
|
# If loading fp8 checkpoint, pass the weight loaders.
|
|
# If loading an fp16 checkpoint, do not (we will quantize in
|
|
# process_weights_after_loading()
|
|
if self.quant_config.is_checkpoint_fp8_serialized:
|
|
set_weight_attrs(w13_scale, extra_weight_attrs)
|
|
set_weight_attrs(w2_scale, extra_weight_attrs)
|
|
|
|
# INPUT_SCALES
|
|
if self.quant_config.activation_scheme == "static":
|
|
if not self.quant_config.is_checkpoint_fp8_serialized:
|
|
raise ValueError(
|
|
"Found static activation scheme for checkpoint that "
|
|
"was not serialized fp8.")
|
|
|
|
a13_scale = torch.nn.Parameter(torch.ones(num_experts,
|
|
dtype=torch.float32),
|
|
requires_grad=False)
|
|
layer.register_parameter("a13_scale", a13_scale)
|
|
set_weight_attrs(a13_scale, extra_weight_attrs)
|
|
|
|
a2_scale = torch.nn.Parameter(torch.ones(num_experts,
|
|
dtype=torch.float32),
|
|
requires_grad=False)
|
|
layer.register_parameter("a2_scale", a2_scale)
|
|
set_weight_attrs(a2_scale, extra_weight_attrs)
|
|
else:
|
|
layer.a13_scale = None
|
|
layer.a2_scale = None
|
|
|
|
def process_weights_after_loading(self, layer: Module) -> None:
|
|
|
|
# If checkpoint is fp16, quantize in place.
|
|
if not self.quant_config.is_checkpoint_fp8_serialized:
|
|
w13_weight = torch.empty_like(layer.w13_weight.data,
|
|
dtype=torch.float8_e4m3fn)
|
|
w2_weight = torch.empty_like(layer.w2_weight.data,
|
|
dtype=torch.float8_e4m3fn)
|
|
|
|
# Re-initialize w13_scale because we directly quantize
|
|
# merged w13 weights and generate a single scaling factor.
|
|
layer.w13_scale = torch.nn.Parameter(torch.ones(
|
|
layer.num_experts,
|
|
dtype=torch.float32,
|
|
device=w13_weight.device),
|
|
requires_grad=False)
|
|
for expert in range(layer.num_experts):
|
|
w13_weight[expert, :, :], layer.w13_scale[
|
|
expert] = ops.scaled_fp8_quant(
|
|
layer.w13_weight.data[expert, :, :])
|
|
w2_weight[expert, :, :], layer.w2_scale[
|
|
expert] = ops.scaled_fp8_quant(
|
|
layer.w2_weight.data[expert, :, :])
|
|
layer.w13_weight = torch.nn.Parameter(w13_weight,
|
|
requires_grad=False)
|
|
layer.w2_weight = torch.nn.Parameter(w2_weight,
|
|
requires_grad=False)
|
|
return
|
|
|
|
# If checkpoint is fp8, we need to handle that the
|
|
# MoE kernels require single activation scale and single weight
|
|
# scale for w13 per expert.
|
|
else:
|
|
# Fp8 moe kernels require a single activation scale.
|
|
# We take the max of all the scales in case they differ.
|
|
if self.quant_config.activation_scheme == "static":
|
|
if layer.a13_scale is None or layer.a2_scale is None:
|
|
raise ValueError(
|
|
"QuantConfig has static quantization, but found "
|
|
"activation scales are None.")
|
|
if (not all_close_1d(layer.a13_scale)
|
|
or not all_close_1d(layer.a2_scale)):
|
|
print_warning_once(
|
|
"Found input_scales that are not equal for "
|
|
"fp8 MoE layer. Using the maximum across experts "
|
|
"for each layer. ")
|
|
layer.a13_scale = torch.nn.Parameter(layer.a13_scale.max(),
|
|
requires_grad=False)
|
|
layer.a2_scale = torch.nn.Parameter(layer.a2_scale.max(),
|
|
requires_grad=False)
|
|
|
|
# Fp8 moe kernel needs single weight scale for w13 per expert.
|
|
# We take the max then dequant and requant each expert.
|
|
assert layer.w13_scale is not None
|
|
shard_size = layer.intermediate_size_per_partition
|
|
max_w13_scales = layer.w13_scale.max(dim=1).values
|
|
for expert_id in range(layer.num_experts):
|
|
start = 0
|
|
for shard_id in range(2):
|
|
dq_weight = per_tensor_dequantize(
|
|
layer.w13_weight[expert_id][start:start +
|
|
shard_size, :],
|
|
layer.w13_scale[expert_id][shard_id])
|
|
layer.w13_weight[expert_id][
|
|
start:start + shard_size, :], _ = ops.scaled_fp8_quant(
|
|
dq_weight, max_w13_scales[expert_id])
|
|
start += shard_size
|
|
|
|
layer.w13_scale = torch.nn.Parameter(max_w13_scales,
|
|
requires_grad=False)
|
|
return
|
|
|
|
def apply(self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
router_logits: torch.Tensor,
|
|
top_k: int,
|
|
renormalize: bool = True) -> torch.Tensor:
|
|
|
|
return fused_moe(x,
|
|
layer.w13_weight,
|
|
layer.w2_weight,
|
|
router_logits,
|
|
top_k,
|
|
renormalize=renormalize,
|
|
inplace=True,
|
|
use_fp8=True,
|
|
w1_scale=layer.w13_scale,
|
|
w2_scale=layer.w2_scale,
|
|
a1_scale=layer.a13_scale,
|
|
a2_scale=layer.a2_scale)
|
|
|
|
|
|
class Fp8KVCacheMethod(QuantizeMethodBase):
|
|
"""Supports loading kv-cache scaling factors from FP8 checkpoints.
|
|
"""
|
|
|
|
def __init__(self, quant_config: Fp8Config):
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(self, layer: torch.nn.Module):
|
|
"""Create "weight" (aka kv_scale) for an attention layer.
|
|
|
|
Args:
|
|
layer: The layer that is using the QuantizeMethodBase factory.
|
|
"""
|
|
# Initialize the KV cache scale to 1.0 as the default value.
|
|
# If the kv_scale appears in the checkpoint, it will be
|
|
# overwritten when loading weights.
|
|
layer.kv_scale = Parameter(torch.tensor(1.0), requires_grad=False)
|
|
|
|
def apply(self, layer: torch.nn.Module) -> torch.Tensor:
|
|
raise RuntimeError("Fp8KVCacheMethod.apply should not be called.")
|
|
|
|
def process_weights_after_loading(self, layer: Module) -> None:
|
|
# If the kv-cache dtype is auto, we enforce the kv-scale to be 1.0
|
|
# regardless whether the kv-scale is available in the checkpoint.
|
|
if layer.kv_cache_dtype != "auto":
|
|
kv_scale = layer.kv_scale.to("cpu").tolist()
|
|
if not isinstance(kv_scale, float):
|
|
raise ValueError("Only support per-tensor scaling factor "
|
|
"for fp8 KV cache")
|
|
layer._kv_scale = kv_scale
|
|
if layer._kv_scale == 1.0 and "e5m2" not in layer.kv_cache_dtype:
|
|
print_warning_once(
|
|
"Using KV cache scaling factor 1.0 for fp8_e4m3. This may "
|
|
"cause accuracy issues. Please make sure kv-cache scaling "
|
|
"factor is available in the fp8 checkpoint.")
|
|
del layer.kv_scale
|