153 lines
5.6 KiB
Python
153 lines
5.6 KiB
Python
from typing import List, Set, Tuple
|
|
|
|
import torch
|
|
|
|
import vllm.envs as envs
|
|
from vllm.config import CacheConfig, ModelConfig, SchedulerConfig
|
|
from vllm.executor.executor_base import ExecutorAsyncBase, ExecutorBase
|
|
from vllm.logger import init_logger
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.sequence import ExecuteModelRequest, SamplerOutput
|
|
from vllm.utils import (get_distributed_init_method, get_ip, get_open_port,
|
|
make_async)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class CPUExecutor(ExecutorBase):
|
|
|
|
def _init_executor(self) -> None:
|
|
assert self.device_config.device_type == "cpu"
|
|
assert self.lora_config is None, "cpu backend doesn't support LoRA"
|
|
self.model_config = _verify_and_get_model_config(self.model_config)
|
|
self.cache_config = _verify_and_get_cache_config(self.cache_config)
|
|
self.scheduler_config = _verify_and_get_scheduler_config(
|
|
self.scheduler_config)
|
|
|
|
# Instantiate the worker and load the model to CPU.
|
|
self._init_worker()
|
|
|
|
def _init_worker(self):
|
|
from vllm.worker.cpu_worker import CPUWorker
|
|
|
|
assert self.parallel_config.world_size == 1, (
|
|
"CPUExecutor only supports single CPU socket currently.")
|
|
|
|
distributed_init_method = get_distributed_init_method(
|
|
get_ip(), get_open_port())
|
|
self.driver_worker = CPUWorker(
|
|
model_config=self.model_config,
|
|
parallel_config=self.parallel_config,
|
|
scheduler_config=self.scheduler_config,
|
|
device_config=self.device_config,
|
|
cache_config=self.cache_config,
|
|
load_config=self.load_config,
|
|
local_rank=0,
|
|
rank=0,
|
|
distributed_init_method=distributed_init_method,
|
|
lora_config=self.lora_config,
|
|
vision_language_config=self.vision_language_config,
|
|
kv_cache_dtype=self.cache_config.cache_dtype,
|
|
is_driver_worker=True,
|
|
)
|
|
self.driver_worker.init_device()
|
|
self.driver_worker.load_model()
|
|
|
|
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
|
"""Determine the number of available KV blocks by invoking the
|
|
underlying worker.
|
|
"""
|
|
return self.driver_worker.determine_num_available_blocks()
|
|
|
|
def initialize_cache(self, num_gpu_blocks: int,
|
|
num_cpu_blocks: int) -> None:
|
|
"""Initialize the KV cache by invoking the underlying worker.
|
|
"""
|
|
# NOTE: We log here to avoid multiple logs when number of workers is
|
|
# greater than one. We could log in the engine, but not all executors
|
|
# have GPUs.
|
|
# NOTE: `cpu block` for CPU backend is located on CPU memory but is
|
|
# referred as `gpu block`. Because we want to reuse the existing block
|
|
# management procedure.
|
|
logger.info("# CPU blocks: %d", num_gpu_blocks)
|
|
self.driver_worker.initialize_cache(num_gpu_blocks, num_cpu_blocks)
|
|
|
|
def execute_model(
|
|
self,
|
|
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
|
|
output = self.driver_worker.execute_model(execute_model_req)
|
|
return output
|
|
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
return self.driver_worker.add_lora(lora_request)
|
|
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
return self.driver_worker.remove_lora(lora_id)
|
|
|
|
def list_loras(self) -> Set[int]:
|
|
return self.driver_worker.list_loras()
|
|
|
|
def check_health(self) -> None:
|
|
# CPUExecutor will always be healthy as long as
|
|
# it's running.
|
|
return
|
|
|
|
|
|
class CPUExecutorAsync(CPUExecutor, ExecutorAsyncBase):
|
|
|
|
async def execute_model_async(
|
|
self,
|
|
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
|
|
output = await make_async(self.driver_worker.execute_model
|
|
)(execute_model_req=execute_model_req, )
|
|
return output
|
|
|
|
async def check_health_async(self) -> None:
|
|
# CPUExecutor will always be healthy as long as
|
|
# it's running.
|
|
return
|
|
|
|
|
|
def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig:
|
|
if config.dtype == torch.float16:
|
|
logger.warning("float16 is not supported on CPU, casting to bfloat16.")
|
|
config.dtype = torch.bfloat16
|
|
if not config.enforce_eager:
|
|
logger.warning(
|
|
"CUDA graph is not supported on CPU, fallback to the eager "
|
|
"mode.")
|
|
config.enforce_eager = True
|
|
return config
|
|
|
|
|
|
def _verify_and_get_scheduler_config(
|
|
config: SchedulerConfig) -> SchedulerConfig:
|
|
if config.chunked_prefill_enabled:
|
|
logger.warning("Chunked prefill is not supported on CPU, disable it.")
|
|
config.chunked_prefill_enabled = False
|
|
|
|
return config
|
|
|
|
|
|
def _verify_and_get_cache_config(config: CacheConfig) -> CacheConfig:
|
|
_GB = 1 << 30
|
|
if config.enable_prefix_caching:
|
|
logger.warning("Prefix caching is not supported on CPU, disable it.")
|
|
config.enable_prefix_caching = False
|
|
|
|
kv_cache_space = envs.VLLM_CPU_KVCACHE_SPACE
|
|
|
|
if kv_cache_space >= 0:
|
|
if kv_cache_space == 0:
|
|
config.cpu_kvcache_space_bytes = 4 * _GB # type: ignore
|
|
logger.warning("Environment variable VLLM_CPU_KVCACHE_SPACE (GB) "
|
|
"for CPU backend is not set, using 4 by default.")
|
|
else:
|
|
config.cpu_kvcache_space_bytes = kv_cache_space * _GB # type: ignore
|
|
else:
|
|
raise RuntimeError(
|
|
"Invalid environment variable VLLM_CPU_KVCACHE_SPACE"
|
|
f" {kv_cache_space}, expect a positive integer value.")
|
|
|
|
return config
|