vllm/vllm/model_executor/models/pixtral.py
2024-10-23 11:27:37 +00:00

1033 lines
37 KiB
Python

from dataclasses import dataclass, fields
from functools import cached_property
from itertools import tee
from typing import Iterable, List, Mapping, Optional, Tuple, Union
import numpy
import torch
import torch.nn as nn
import torch.nn.functional as F
from mistral_common.protocol.instruct.messages import ImageChunk
from PIL import Image
from transformers import PixtralVisionConfig, PretrainedConfig
from transformers.models.pixtral.image_processing_pixtral import (
_num_image_tokens)
from transformers.models.pixtral.modeling_pixtral import (
PixtralRotaryEmbedding, apply_rotary_pos_emb, position_ids_in_meshgrid)
from xformers.ops.fmha import memory_efficient_attention
from xformers.ops.fmha.attn_bias import BlockDiagonalMask
from vllm.attention import AttentionMetadata
from vllm.config import CacheConfig, ModelConfig, MultiModalConfig
from vllm.inputs import (INPUT_REGISTRY, DecoderOnlyInputs, InputContext,
token_inputs)
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.utils import merge_multimodal_embeddings
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.base import MultiModalInputs
from vllm.multimodal.utils import cached_get_tokenizer
from vllm.sequence import IntermediateTensors, SequenceData
from vllm.transformers_utils.processor import cached_get_processor
from vllm.utils import is_list_of
from .interfaces import SupportsMultiModal, SupportsPP
from .utils import init_vllm_registered_model
def get_max_pixtral_image_tokens(ctx: InputContext):
tokenizer = cached_get_tokenizer(
ctx.model_config.tokenizer,
tokenizer_mode=ctx.model_config.tokenizer_mode)
mm_encoder = tokenizer.instruct.mm_encoder
max_image_size = mm_encoder.mm_config.max_image_size
image_patch_size = mm_encoder.mm_config.image_patch_size
return ((max_image_size // image_patch_size)**2)
def dummy_data_for_pixtral(ctx: InputContext, seq_len: int,
mm_counts: Mapping[str, int]):
tokenizer = cached_get_tokenizer(
ctx.model_config.tokenizer,
tokenizer_mode=ctx.model_config.tokenizer_mode)
mm_encoder = tokenizer.mistral.instruct_tokenizer.mm_encoder
patch_size = mm_encoder.mm_config.image_patch_size
image_token_id = mm_encoder.special_ids.img
mm_config = ctx.model_config.multimodal_config
num_images = mm_config.limit_per_prompt.get("image", 1)
# dummy size
size = 256
image = Image.new("RGB", (size, size), color=0)
image_feature_size = (size**2) // (patch_size**2)
num_image_tokens = image_feature_size * num_images
seq_data = SequenceData.from_prompt_token_counts(
(image_token_id, num_image_tokens),
(0, seq_len - num_image_tokens),
)
mm_data = {"image": num_images * [image]}
return seq_data, mm_data
def input_mapper_for_pixtral(ctx: InputContext,
data: object) -> MultiModalInputs:
"""Maps the input data to its MultiModalInputs (if any).
Args:
ctx: Context of the loaded model.
data: data potentially containing image/image embeddings to be mapped
to pixel_values in .forward() for a visual QWenLMHeadModel model.
Returns:
MultiModalInputs containing the stacked normalized images tensor or
image embeddings.
"""
# Early exit if we have provided an image to a language only Qwen model
model_config = ctx.model_config
tokenizer = cached_get_tokenizer(
model_config.tokenizer, tokenizer_mode=model_config.tokenizer_mode)
data_list = data if isinstance(data, list) else [data]
images = []
for image_data in data_list:
image = ImageChunk(image=image_data)
encoding = tokenizer.instruct.mm_encoder(image)
image = torch.from_numpy(encoding.image).to(device="cuda",
dtype=torch.float16)
images.append(image)
return MultiModalInputs({"images": images})
def input_processor_for_pixtral(ctx: InputContext, inputs: DecoderOnlyInputs):
multi_modal_data = inputs.get("multi_modal_data")
if multi_modal_data is not None and "image" in multi_modal_data:
tokenizer = cached_get_tokenizer(
ctx.model_config.tokenizer,
tokenizer_mode=ctx.model_config.tokenizer_mode)
mm_encoder = tokenizer.mistral.instruct_tokenizer.mm_encoder
image_token_id = mm_encoder.special_ids.img
if image_token_id not in inputs['prompt_token_ids']:
raise ValueError(
(f"You've passed {inputs=} without {image_token_id=}"
" Make sure to process your input via mistral_common's"
" tokenizer or pass a chat completion request. For more"
" For more info, see: "
"https://github.com/vllm-project/vllm/issues/8411."))
return inputs
@MULTIMODAL_REGISTRY.register_image_input_mapper(input_mapper_for_pixtral)
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_pixtral_image_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_pixtral)
@INPUT_REGISTRY.register_input_processor(input_processor_for_pixtral)
class PixtralForConditionalGeneration(nn.Module, SupportsMultiModal,
SupportsPP):
def __init__(self,
config: PretrainedConfig,
multimodal_config: MultiModalConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.config = config
self.multimodal_config = multimodal_config
dataclass_fields = {field.name for field in fields(VisionEncoderArgs)}
vision_args = {
key: value
for key, value in self.config.vision_config.to_dict().items()
if key in dataclass_fields
}
self.vision_args = VisionEncoderArgs(**vision_args)
# init MistralForCausalLM
self.language_model = init_vllm_registered_model(
config.text_config, cache_config, quant_config)
self.vision_encoder = VisionTransformer(self.vision_args)
self.vision_language_adapter = VisionLanguageAdapter(
self.vision_args, dim=config.text_config.hidden_size)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
@cached_property
def sampler(self):
if hasattr(self.language_model, "sampler"):
return self.language_model.sampler
return Sampler()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
"""Run forward pass for pixtral.
TODO
"""
if intermediate_tensors is not None:
input_ids = None
inputs_embeds = None
else:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is not None:
vision_embeddings = self._process_image_input(image_input)
inputs_embeds = self.language_model.model.get_input_embeddings(
input_ids)
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, vision_embeddings,
self.vision_args.image_token_id)
input_ids = None
else:
inputs_embeds = None
hidden_states = self.language_model.model(input_ids,
positions,
kv_caches,
attn_metadata,
intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def _parse_and_validate_image_input(
self,
images: Optional[Union[List[List[torch.Tensor]], List[torch.Tensor],
torch.Tensor]] = None
) -> Optional[List[torch.Tensor]]:
if images is None:
return None
if isinstance(images, torch.Tensor):
# if passed as batch take all images
N, B, C, W, H = images.shape
images = images.reshape(N * B, C, W, H)
images = [images[i] for i in range(images.size(0))]
elif isinstance(images, list):
# if passed as list flatten lists of tensors
flatten_images = []
for imgs_per_req in images:
imgs_per_req = [
imgs_per_req[i] for i in range(imgs_per_req.size(0))
] if isinstance(imgs_per_req, torch.Tensor) else imgs_per_req
flatten_images.extend(imgs_per_req)
images = flatten_images
return images
def _process_image_input(self,
image_input: List[torch.Tensor]) -> torch.Tensor:
return self.vision_language_adapter(self.vision_encoder(image_input))
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
return self.language_model.sample(logits, sampling_metadata)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
def is_vision_encoder_weights(weight: Tuple[str, torch.Tensor]):
return weight[0].startswith("vision_encoder")
def is_vision_lang_adapter_weights(weight: Tuple[str, torch.Tensor]):
return weight[0].startswith("vision_language_adapter")
def is_vision_weights(weight: Tuple[str, torch.Tensor]):
return is_vision_encoder_weights(
weight) or is_vision_lang_adapter_weights(weight)
llm_weights, vision_encoder_weights, vision_lang_adapter_weights = tee(
weights, 3)
# llm
llm_weights = filter(lambda x: not is_vision_weights(x), llm_weights)
self.language_model.load_weights(llm_weights)
# vision encoder
vision_encoder_weights = filter(is_vision_encoder_weights,
vision_encoder_weights)
vision_encoder_dict = dict(self.vision_encoder.named_parameters())
for name, loaded_weight in vision_encoder_weights:
# cut 'vision_encoder.'
name = '.'.join(name.split(".")[1:])
param = vision_encoder_dict[name]
default_weight_loader(param, loaded_weight)
# adapter
vision_lang_adapter_weights = filter(is_vision_lang_adapter_weights,
vision_lang_adapter_weights)
vision_lang_adpter_dict = dict(
self.vision_language_adapter.named_parameters())
for name, loaded_weight in vision_lang_adapter_weights:
# cut 'vision_language_adapter.'
name = '.'.join(name.split(".")[1:])
param = vision_lang_adpter_dict[name]
default_weight_loader(param, loaded_weight)
# Vision encoder
@dataclass
class VisionEncoderArgs:
hidden_size: int
num_channels: int
image_size: int
patch_size: int
intermediate_size: int
num_hidden_layers: int
num_attention_heads: int
rope_theta: float # for rope-2D
image_token_id: int
def _reshape_for_broadcast(freqs_cis: torch.Tensor,
x: torch.Tensor) -> torch.Tensor:
"""
freqs_cis: complex - (seq_len, head_dim / 2)
x: complex - (bsz, seq_len, head_dim / 2)
"""
ndim = x.ndim
assert ndim > 1
assert freqs_cis.shape == (x.shape[1], x.shape[-1]), (
freqs_cis.shape,
(x.shape[1], x.shape[-1]),
)
shape = [
d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)
]
return freqs_cis.view(*shape)
def precompute_freqs_cis_2d(
dim: int,
height: int,
width: int,
theta: float,
) -> torch.Tensor:
"""
freqs_cis: 2D complex tensor of shape (height, width, dim // 2)
to be indexed by (height, width) position tuples
"""
# (dim / 2) frequency bases
freqs = 1.0 / (theta**(torch.arange(0, dim, 2).float() / dim))
h = torch.arange(height, device=freqs.device)
w = torch.arange(width, device=freqs.device)
freqs_h = torch.outer(h, freqs[::2]).float()
freqs_w = torch.outer(w, freqs[1::2]).float()
freqs_2d = torch.cat(
[
freqs_h[:, None, :].repeat(1, width, 1),
freqs_w[None, :, :].repeat(height, 1, 1),
],
dim=-1,
)
return torch.polar(torch.ones_like(freqs_2d), freqs_2d)
def apply_rotary_emb_vit(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
assert freqs_cis.dtype == torch.complex64
freqs_cis = _reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class FeedForward(nn.Module):
def __init__(self, args: VisionEncoderArgs):
super().__init__()
assert args.intermediate_size is not None
self.w1 = nn.Linear(args.hidden_size,
args.intermediate_size,
bias=False)
self.w2 = nn.Linear(args.intermediate_size,
args.hidden_size,
bias=False)
self.w3 = nn.Linear(args.hidden_size,
args.intermediate_size,
bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class Attention(nn.Module):
def __init__(self, args: VisionEncoderArgs):
super().__init__()
self.args = args
assert not args.hidden_size % args.num_attention_heads
self.n_heads = args.num_attention_heads
self.head_dim = args.hidden_size // args.num_attention_heads
self.wq = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
self.wk = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
self.wv = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
self.wo = nn.Linear(args.hidden_size, args.hidden_size, bias=False)
def forward(
self,
x: torch.Tensor,
mask: BlockDiagonalMask,
freqs_cis: torch.Tensor,
) -> torch.Tensor:
batch, patches, _ = x.shape
q, k, v = self.wq(x), self.wk(x), self.wv(x)
q = q.reshape(batch, patches, self.n_heads, self.head_dim)
k = k.reshape(batch, patches, self.n_heads, self.head_dim)
v = v.reshape(batch, patches, self.n_heads, self.head_dim)
q, k = apply_rotary_emb_vit(q, k, freqs_cis=freqs_cis)
out = memory_efficient_attention(q, k, v, attn_bias=mask)
out = out.reshape(batch, patches, self.n_heads * self.head_dim)
return self.wo(out)
class TransformerBlock(nn.Module):
def __init__(self, args: VisionEncoderArgs):
super().__init__()
self.attention = Attention(args)
self.feed_forward = FeedForward(args)
self.attention_norm = RMSNorm(args.hidden_size, eps=1e-5)
self.ffn_norm = RMSNorm(args.hidden_size, eps=1e-5)
def forward(
self,
x: torch.Tensor,
mask: BlockDiagonalMask,
freqs_cis: torch.Tensor,
) -> torch.Tensor:
r = self.attention.forward(self.attention_norm(x),
mask=mask,
freqs_cis=freqs_cis)
h = x + r
r = self.feed_forward.forward(self.ffn_norm(h))
out = h + r
return out
class Transformer(nn.Module):
def __init__(self, args: VisionEncoderArgs):
super().__init__()
self.layers = torch.nn.ModuleList()
for _ in range(args.num_hidden_layers):
self.layers.append(TransformerBlock(args))
def forward(
self,
x: torch.Tensor,
mask: BlockDiagonalMask,
freqs_cis: Optional[torch.Tensor],
) -> torch.Tensor:
for layer in self.layers:
x = layer(x, mask=mask, freqs_cis=freqs_cis)
return x
def position_meshgrid(patch_embeds_list: List[torch.Tensor], ) -> torch.Tensor:
positions = torch.cat([
torch.stack(
torch.meshgrid(
torch.arange(p.shape[-2]),
torch.arange(p.shape[-1]),
indexing="ij",
),
dim=-1,
).reshape(-1, 2) for p in patch_embeds_list
])
return positions
class VisionTransformer(nn.Module):
def __init__(self, args: VisionEncoderArgs):
super().__init__()
self.args = args
self.patch_conv = nn.Conv2d(
in_channels=args.num_channels,
out_channels=args.hidden_size,
kernel_size=args.patch_size,
stride=args.patch_size,
bias=False,
)
self.ln_pre = RMSNorm(args.hidden_size, eps=1e-5)
self.transformer = Transformer(args)
head_dim = self.args.hidden_size // self.args.num_attention_heads
assert head_dim % 2 == 0, "ROPE requires even head_dim"
self._freqs_cis: Optional[torch.Tensor] = None
@property
def max_patches_per_side(self) -> int:
return self.args.image_size // self.args.patch_size
@property
def device(self) -> torch.device:
return next(self.parameters()).device
@property
def dtype(self) -> torch.device:
return next(self.parameters()).dtype
@property
def freqs_cis(self) -> torch.Tensor:
if self._freqs_cis is None:
self._freqs_cis = precompute_freqs_cis_2d(
dim=self.args.hidden_size // self.args.num_attention_heads,
height=self.max_patches_per_side,
width=self.max_patches_per_side,
theta=self.args.rope_theta,
)
if self._freqs_cis.device != self.device:
self._freqs_cis = self._freqs_cis.to(device=self.device)
return self._freqs_cis
def forward(
self,
images: List[torch.Tensor],
) -> torch.Tensor:
"""
Args:
images: list of N_img images of variable sizes,
each of shape (C, H, W)
Returns:
image_features: tensor of token features for
all tokens of all images of shape (N_toks, D)
"""
# pass images through initial convolution independently
patch_embeds_list = [
self.patch_conv(img.unsqueeze(0).to(self.dtype)) for img in images
]
# flatten to a single sequence
patch_embeds = torch.cat(
[p.flatten(2).permute(0, 2, 1) for p in patch_embeds_list], dim=1)
patch_embeds = self.ln_pre(patch_embeds)
# positional embeddings
positions = position_meshgrid(patch_embeds_list).to(self.device)
freqs_cis = self.freqs_cis[positions[:, 0], positions[:, 1]]
# pass through Transformer with a block diagonal mask delimiting images
mask = BlockDiagonalMask.from_seqlens(
[p.shape[-2] * p.shape[-1] for p in patch_embeds_list], )
out = self.transformer(patch_embeds, mask=mask, freqs_cis=freqs_cis)
# remove batch dimension of the single sequence
return out.squeeze(0)
class VisionLanguageAdapter(nn.Module):
def __init__(self, args: VisionEncoderArgs, dim: int):
super().__init__()
assert isinstance(args, VisionEncoderArgs)
self.w_in = nn.Linear(
args.hidden_size,
dim,
bias=True,
)
self.gelu = nn.GELU()
self.w_out = nn.Linear(dim, dim, bias=True)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.w_out(self.gelu(self.w_in(x)))
#### HF Transformers version of Pixtral ####
# Based off https://github.com/huggingface/transformers/blob/d7950bff82b18c823193d17d72188c5e46d06c83/src/transformers/models/pixtral/modeling_pixtral.py
# This model follows the Llava family, meaning image embeddings are placed
# instead of the `[IMG]` token placeholders.
# The model uses [`PixtralVisionModel`] for its vision encoder,
# and [`MistralForCausalLM`] for its language decoder.
def get_pixtral_hf_patch_grid_length(*, image_size: int,
patch_size: int) -> int:
# Since interpolation is applied, the image size need not be divisible
# assert image_size % patch_size == 0
return image_size // patch_size
def get_pixtral_hf_num_patches(*, image_size: int, patch_size: int) -> int:
grid_length = get_pixtral_hf_patch_grid_length(image_size=image_size,
patch_size=patch_size)
return grid_length * grid_length
def get_max_pixtral_hf_image_feature_size(
hf_config: PixtralVisionConfig) -> int:
return get_pixtral_hf_num_patches(image_size=hf_config.image_size,
patch_size=hf_config.patch_size)
def get_max_pixtral_hf_image_tokens(hf_config: PixtralVisionConfig) -> int:
return get_max_pixtral_hf_image_feature_size(hf_config)
def dummy_seq_data_for_pixtral_hf(
hf_config: PixtralVisionConfig,
seq_len: int,
num_images: int,
*,
image_token_id: int,
image_feature_size_override: Optional[int] = None,
):
if image_feature_size_override is None:
image_feature_size = get_max_pixtral_hf_image_feature_size(hf_config)
else:
image_feature_size = image_feature_size_override
return SequenceData.from_prompt_token_counts(
(image_token_id, image_feature_size * num_images),
(0, seq_len - image_feature_size * num_images),
)
def dummy_image_for_pixtral_hf(
hf_config: PixtralVisionConfig,
num_images: int,
*,
image_width_override: Optional[int] = None,
image_height_override: Optional[int] = None,
):
width = height = hf_config.image_size
if image_width_override is not None:
width = image_width_override
if image_height_override is not None:
height = image_height_override
image = Image.new("RGB", (width, height), color=0)
return {"image": image if num_images == 1 else [image] * num_images}
def get_pixtral_hf_image_feature_size(hf_config: PixtralVisionConfig,
image_width: int,
image_height: int) -> Tuple[int, int]:
# Adapted from transformers.models.pixtral.image_processing_pixtral.get_resize_output_image_size # noqa: E501
# https://github.com/huggingface/transformers/blob/2bd4d5897dc73e8b172832070a6f9e567a0df017/src/transformers/models/pixtral/image_processing_pixtral.py#L180 # noqa: E501
max_width, max_height = hf_config.image_size, hf_config.image_size
patch_width, patch_height = hf_config.patch_size, hf_config.patch_size
ratio = max(image_width / max_width, image_height / max_height)
if ratio > 1:
image_width = int(numpy.ceil(image_width / ratio))
image_height = int(numpy.ceil(image_height / ratio))
num_height_tokens, num_width_tokens = _num_image_tokens(
(image_height, image_width), (patch_height, patch_width))
return num_width_tokens, num_height_tokens
def input_processor_for_pixtral_hf(
model_config: ModelConfig,
hf_config: PixtralVisionConfig,
inputs: DecoderOnlyInputs,
*,
image_token_id: int,
image_feature_size_override: Optional[Union[int, List[int]]] = None,
) -> DecoderOnlyInputs:
assert image_feature_size_override is None, (
"image_feature_size_override is not supported for Pixtral")
multi_modal_data = inputs.get("multi_modal_data")
if multi_modal_data is None or "image" not in multi_modal_data:
return inputs
processor = cached_get_processor(model_config.model)
image_data = multi_modal_data["image"]
if isinstance(image_data, Image.Image):
image_data = [image_data]
elif not is_list_of(image_data, Image.Image):
raise TypeError(f"Invalid image type: {type(image_data)}")
new_prompt = inputs.get("prompt")
new_token_ids = inputs["prompt_token_ids"]
image_token = processor.image_token
image_break_token = processor.image_break_token
image_end_token = processor.image_end_token
# Update new_prompt if present
if new_prompt:
parts = new_prompt.split(image_token)
assert len(parts) - 1 == len(image_data)
new_parts = [parts[0]] # Start with the part before any image tokens
for image, next_part in zip(image_data, parts[1:]):
w, h = image.size
(num_width_tokens,
num_height_tokens) = get_pixtral_hf_image_feature_size(
hf_config, image_width=w, image_height=h)
replace_tokens = [image_token] * num_width_tokens + [
image_break_token
]
replace_tokens = replace_tokens * num_height_tokens
replace_tokens[-1] = image_end_token
new_parts.append("".join(replace_tokens))
new_parts.append(next_part)
new_prompt = "".join(new_parts)
# Update new_token_ids
convert_tokens_to_ids = processor.tokenizer.convert_tokens_to_ids
image_token_id = convert_tokens_to_ids(image_token)
image_break_id = convert_tokens_to_ids(image_break_token)
image_end_id = convert_tokens_to_ids(image_end_token)
placeholder_token_id = -999
# Find all image token indices at once
placeholder_indices = [
idx for idx, token_id in enumerate(new_token_ids)
if token_id == image_token_id
]
assert len(placeholder_indices) == len(image_data)
replace_tokens_list = []
for placeholder_idx, image in zip(placeholder_indices, image_data):
new_token_ids[placeholder_idx] = placeholder_token_id
w, h = image.size
(num_width_tokens,
num_height_tokens) = get_pixtral_hf_image_feature_size(hf_config,
image_width=w,
image_height=h)
replace_tokens = [image_token_id] * num_width_tokens + [image_break_id]
replace_tokens = replace_tokens * num_height_tokens
replace_tokens[-1] = image_end_id
replace_tokens_list.append(replace_tokens)
# Backward iteration for replacement without affecting known indices
for placeholder_idx, replace_tokens in zip(reversed(placeholder_indices),
reversed(replace_tokens_list)):
new_token_ids[placeholder_idx:placeholder_idx + 1] = replace_tokens
# NOTE: Create a defensive copy of the original inputs
return token_inputs(prompt_token_ids=new_token_ids,
prompt=new_prompt,
multi_modal_data=multi_modal_data)
class PixtralHFMLP(nn.Module):
def __init__(
self,
config: PixtralVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
prefix: str = "",
) -> None:
super().__init__()
assert config.intermediate_size is not None
# TODO: Use quant_config and prefix after optimizing this
self.gate_proj = nn.Linear(config.hidden_size,
config.intermediate_size,
bias=False)
self.up_proj = nn.Linear(config.hidden_size,
config.intermediate_size,
bias=False)
self.down_proj = nn.Linear(config.intermediate_size,
config.hidden_size,
bias=False)
self.act = get_act_fn(config.hidden_act)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.down_proj(self.act(self.gate_proj(x)) * self.up_proj(x))
class PixtralHFAttention(nn.Module):
def __init__(
self,
config: PixtralVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
assert not config.hidden_size % config.num_attention_heads
self.n_heads = config.num_attention_heads
self.head_dim = config.hidden_size // config.num_attention_heads
self.scale = self.head_dim**-0.5
# TODO: Use quant_config and prefix after optimizing this
self.q_proj = nn.Linear(config.hidden_size,
config.hidden_size,
bias=False)
self.k_proj = nn.Linear(config.hidden_size,
config.hidden_size,
bias=False)
self.v_proj = nn.Linear(config.hidden_size,
config.hidden_size,
bias=False)
self.o_proj = nn.Linear(config.hidden_size,
config.hidden_size,
bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: BlockDiagonalMask,
position_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
batch, patches, _ = hidden_states.size()
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
# Transpose q and k to apply HF's Rotary Position Embedding
q = q.view(batch, patches, self.n_heads, self.head_dim).transpose(1, 2)
k = k.view(batch, patches, self.n_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
q, k = apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=0)
# Transpose q and k back for attention
q = q.transpose(1, 2).contiguous()
k = k.transpose(1, 2).contiguous()
v = v.reshape(batch, patches, self.n_heads, self.head_dim)
out = memory_efficient_attention(q, k, v, attn_bias=attention_mask)
out = out.reshape(batch, patches, self.n_heads * self.head_dim)
return self.o_proj(out)
class PixtralHFTransformerBlock(nn.Module):
def __init__(
self,
config: PixtralVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
prefix: str = "",
) -> None:
super().__init__()
self.attention_norm = RMSNorm(config.hidden_size, eps=1e-5)
self.attention = PixtralHFAttention(config,
quant_config=quant_config,
prefix=f"{prefix}.attention")
self.feed_forward = PixtralHFMLP(config,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward")
self.ffn_norm = RMSNorm(config.hidden_size, eps=1e-5)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: BlockDiagonalMask,
position_embeddings: torch.Tensor,
) -> torch.Tensor:
r = self.attention.forward(self.attention_norm(hidden_states),
attention_mask=attention_mask,
position_embeddings=position_embeddings)
h = hidden_states + r
r = self.feed_forward.forward(self.ffn_norm(h))
out = h + r
return out
class PixtralHFTransformer(nn.Module):
def __init__(
self,
config: PixtralVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
prefix: str = "",
) -> None:
super().__init__()
if num_hidden_layers_override is None:
num_hidden_layers = config.num_hidden_layers
else:
num_hidden_layers = num_hidden_layers_override
self.layers = nn.ModuleList([
PixtralHFTransformerBlock(config=config,
quant_config=quant_config,
prefix=f"{prefix}.layers.{layer_idx}")
for layer_idx in range(num_hidden_layers)
])
def forward(
self,
x: torch.Tensor,
attention_mask: BlockDiagonalMask,
position_embeddings: torch.Tensor,
) -> torch.Tensor:
for layer in self.layers:
x = layer(x, attention_mask, position_embeddings)
return x
class PixtralHFVisionModel(nn.Module):
def __init__(
self,
config: PixtralVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
*,
num_hidden_layers_override: Optional[int] = None,
require_post_norm: Optional[bool] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.patch_conv = nn.Conv2d(
in_channels=config.num_channels,
out_channels=config.hidden_size,
kernel_size=config.patch_size,
stride=config.patch_size,
bias=False,
)
self.ln_pre = RMSNorm(config.hidden_size, eps=1e-5)
self.transformer = PixtralHFTransformer(
config,
quant_config,
num_hidden_layers_override=num_hidden_layers_override,
prefix=f"{prefix}.transformer",
)
num_hidden_layers = config.num_hidden_layers
if len(self.transformer.layers) > config.num_hidden_layers:
raise ValueError(
f"The original encoder only has {num_hidden_layers} "
f"layers, but you requested {len(self.transformer.layers)} "
"layers.")
if require_post_norm is True:
msg = "PixtralHFVisionModel does not have post-layernorm"
raise ValueError(msg)
self.dtype = next(self.parameters()).dtype
self.device = next(self.parameters()).device
self.patch_positional_embedding = PixtralRotaryEmbedding(
config, self.device)
def forward(
self,
pixel_values: List[torch.Tensor],
) -> torch.Tensor:
"""
Args:
pixel_values: Each image to be processed will be a separate tensor
in pixel_values. This means it will be a list of tensors
because multiple requests batched can have multiple images,
each with their own shape potentially
Returns:
image_features: tensor of token features for
all tokens of all images of shape (N_toks, D)
"""
# pass images through initial convolution independently
patch_embeds_list = [
self.patch_conv(img.unsqueeze(0).to(self.dtype))
for img in pixel_values
]
# flatten to a single sequence
patch_embeds = torch.cat(
[p.flatten(2).permute(0, 2, 1) for p in patch_embeds_list], dim=1)
patch_embeds = self.ln_pre(patch_embeds)
# positional embeddings
position_ids = position_ids_in_meshgrid(
patch_embeds_list,
max_width=self.config.image_size // self.config.patch_size).to(
self.device)
position_embedding = self.patch_positional_embedding(
patch_embeds, position_ids)
attention_mask = BlockDiagonalMask.from_seqlens(
[p.shape[-2] * p.shape[-1] for p in patch_embeds_list], )
out = self.transformer(patch_embeds, attention_mask,
position_embedding)
return out
# (TODO) Add prefix argument for filtering out weights to be loaded
# ref: https://github.com/vllm-project/vllm/pull/7186#discussion_r1734163986
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = []
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
param = params_dict[name.replace(weight_name, param_name)]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)