vllm/vllm/worker/xpu_model_runner.py

505 lines
20 KiB
Python

from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Type, Union
import torch
import torch.nn as nn
from vllm.attention import get_attn_backend
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
ModelConfig, MultiModalConfig, ParallelConfig,
PromptAdapterConfig, SchedulerConfig)
from vllm.distributed import broadcast_tensor_dict
from vllm.inputs import INPUT_REGISTRY, InputRegistry
from vllm.logger import init_logger
from vllm.model_executor.model_loader import get_model
from vllm.multimodal import (MULTIMODAL_REGISTRY, BatchedTensorInputs,
MultiModalInputs, MultiModalRegistry)
from vllm.sampling_params import SamplingParams
from vllm.sequence import (IntermediateTensors, SamplerOutput,
SequenceGroupMetadata)
from vllm.utils import CudaMemoryProfiler, make_tensor_with_pad
from vllm.worker.model_runner import AttentionMetadata, SamplingMetadata
from vllm.worker.model_runner_base import (
ModelRunnerBase, ModelRunnerInputBase,
_add_attn_metadata_broadcastable_dict,
_add_sampling_metadata_broadcastable_dict,
_init_attn_metadata_from_tensor_dict,
_init_sampling_metadata_from_tensor_dict)
if TYPE_CHECKING:
from vllm.attention.backends.abstract import AttentionBackend
logger = init_logger(__name__)
_PAD_SLOT_ID = -1
_BATCH_SIZE_ALIGNMENT = 8
_BATCH_SIZES_TO_CAPTURE = [1, 2, 4] + [
_BATCH_SIZE_ALIGNMENT * i for i in range(1, 33)
]
@dataclass(frozen=True)
class ModelInputForXPU(ModelRunnerInputBase):
"""
Used by the NeuronModelRunner.
"""
input_tokens: Optional[torch.Tensor] = None
input_positions: Optional[torch.Tensor] = None
attn_metadata: Optional["AttentionMetadata"] = None
sampling_metadata: Optional["SamplingMetadata"] = None
multi_modal_kwargs: Optional[BatchedTensorInputs] = None
def as_broadcastable_tensor_dict(
self) -> Dict[str, Union[int, torch.Tensor]]:
tensor_dict = {
"input_tokens": self.input_tokens,
"input_positions": self.input_positions,
}
_add_attn_metadata_broadcastable_dict(tensor_dict, self.attn_metadata)
_add_sampling_metadata_broadcastable_dict(tensor_dict,
self.sampling_metadata)
return tensor_dict
@classmethod
def from_broadcasted_tensor_dict(
cls: Type["ModelInputForXPU"],
tensor_dict: Dict[str, Any],
attn_backend: Optional["AttentionBackend"] = None,
) -> "ModelInputForXPU":
tensor_dict = _init_sampling_metadata_from_tensor_dict(tensor_dict)
if attn_backend is not None:
tensor_dict = _init_attn_metadata_from_tensor_dict(
attn_backend, tensor_dict)
return cls(**tensor_dict)
class XPUModelRunner(ModelRunnerBase[ModelInputForXPU]):
def __init__(
self,
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
cache_config: CacheConfig,
load_config: LoadConfig,
lora_config: Optional[LoRAConfig],
multimodal_config: Optional[MultiModalConfig],
kv_cache_dtype: Optional[str] = "auto",
prompt_adapter_config: Optional[PromptAdapterConfig] = None,
is_driver_worker: bool = False,
input_registry: InputRegistry = INPUT_REGISTRY,
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
*args,
**kwargs,
):
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.lora_config = lora_config
self.load_config = load_config
self.cache_config = cache_config
self.prompt_adapter_config = prompt_adapter_config
self.multimodal_config = multimodal_config
self.is_driver_worker = is_driver_worker
self.sliding_window = model_config.get_sliding_window()
self.device_config = device_config
self.device = self.device_config.device
self.kv_cache_dtype = kv_cache_dtype
self.block_size = cache_config.block_size
self.attn_backend = get_attn_backend(
self.model_config.get_num_attention_heads(self.parallel_config),
self.model_config.get_head_size(),
self.model_config.get_num_kv_heads(self.parallel_config),
self.model_config.get_sliding_window(),
self.model_config.dtype,
self.kv_cache_dtype,
self.block_size,
)
# Multi-modal data support
self.input_registry = input_registry
self.mm_registry = mm_registry
self.multi_modal_input_mapper = mm_registry \
.create_input_mapper(model_config)
self.mm_registry.init_mm_limits_per_prompt(self.model_config)
# Lazy initialization.
self.model: nn.Module # Set after init_Model
def load_model(self) -> None:
with CudaMemoryProfiler() as m:
self.model = get_model(
model_config=self.model_config,
device_config=self.device_config,
load_config=self.load_config,
lora_config=self.lora_config,
parallel_config=self.parallel_config,
scheduler_config=self.scheduler_config,
cache_config=self.cache_config,
)
self.model_memory_usage = m.consumed_memory
logger.info("Loading model weights took %.4f GB",
self.model_memory_usage / float(2**30))
@property
def vocab_size(self) -> int:
return self.model_config.get_vocab_size()
@torch.inference_mode()
def profile_run(self) -> None:
# Enable top-k sampling to reflect the accurate memory usage.
sampling_params = SamplingParams(top_p=0.99, top_k=self.vocab_size - 1)
max_num_batched_tokens = self.scheduler_config.max_num_batched_tokens
max_num_seqs = self.scheduler_config.max_num_seqs
# Profile memory usage with max_num_sequences sequences and the total
# number of tokens equal to max_num_batched_tokens.
seqs: List[SequenceGroupMetadata] = []
# Additional GPU memory may be needed for multi-modal encoding, which
# needs to be accounted for when calculating the GPU blocks for
# vLLM blocker manager.
# To exercise the worst scenario for GPU memory consumption,
# the number of seqs (batch_size) is chosen to maximize the number
# of images processed.
max_mm_tokens = self.mm_registry.get_max_multimodal_tokens(
self.model_config)
if max_mm_tokens > 0:
max_num_seqs_orig = max_num_seqs
max_num_seqs = min(max_num_seqs,
max_num_batched_tokens // max_mm_tokens)
if max_num_seqs < 1:
expr = (f"min({max_num_seqs_orig}, "
f"{max_num_batched_tokens} // {max_mm_tokens})")
logger.warning(
"Computed max_num_seqs (%s) to be less than 1. "
"Setting it to the minimum value of 1.", expr)
max_num_seqs = 1
for group_id in range(max_num_seqs):
seq_len = (max_num_batched_tokens // max_num_seqs +
(group_id < max_num_batched_tokens % max_num_seqs))
seq_data, dummy_multi_modal_data = self.input_registry \
.dummy_data_for_profiling(self.model_config,
seq_len,
self.mm_registry)
seq = SequenceGroupMetadata(
request_id=str(group_id),
is_prompt=True,
seq_data={group_id: seq_data},
sampling_params=sampling_params,
block_tables=None,
lora_request=None,
multi_modal_data=dummy_multi_modal_data,
)
seqs.append(seq)
# Run the model with the dummy inputs.
num_layers = self.model_config.get_num_layers(self.parallel_config)
kv_caches = [None] * num_layers
model_input = self.prepare_model_input(seqs)
self.execute_model(model_input, kv_caches)
torch.xpu.synchronize()
return
def make_model_input_from_broadcasted_tensor_dict(
self, tensor_dict: Dict[str, Any]) -> ModelInputForXPU:
return (ModelInputForXPU.from_broadcasted_tensor_dict(
tensor_dict,
attn_backend=self.attn_backend,
))
def prepare_model_input(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
virtual_engine: int = 0,
finished_requests_ids: Optional[List[str]] = None
) -> ModelInputForXPU:
multi_modal_kwargs = None
if self.is_driver_worker:
# NOTE: We assume that all sequences in the group are all prompts or
# all decodes.
is_prompt = seq_group_metadata_list[0].is_prompt
# Prepare input tensors.
if is_prompt:
(input_tokens, input_positions, attn_metadata, seq_lens,
multi_modal_kwargs
) = self._prepare_prompt(seq_group_metadata_list)
else:
(input_tokens, input_positions,
attn_metadata) = self._prepare_decode(seq_group_metadata_list)
seq_lens = []
sampling_metadata = SamplingMetadata.prepare(
seq_group_metadata_list,
seq_lens,
# subquery_lens is not needed if chunked prefill is not
# supported. Since CPU worker doesn't support chunked prefill
# just use seq_lens instead.
seq_lens,
self.device,
pin_memory=False,
generators=self.get_generators(finished_requests_ids))
# Broadcast the metadata.
metadata_dict = {
"input_tokens": input_tokens,
"input_positions": input_positions,
"selected_token_indices":
sampling_metadata.selected_token_indices,
"multi_modal_kwargs": multi_modal_kwargs,
}
metadata_dict.update(attn_metadata.asdict_zerocopy())
broadcast_tensor_dict(metadata_dict, src=0)
else:
metadata_dict = broadcast_tensor_dict(src=0)
input_tokens = metadata_dict.pop("input_tokens")
input_positions = metadata_dict.pop("input_positions")
selected_token_indices = metadata_dict.pop(
"selected_token_indices")
multi_modal_kwargs = metadata_dict.pop("multi_modal_kwargs")
attn_metadata = self.attn_backend.make_metadata(**metadata_dict)
sampling_metadata = SamplingMetadata(
seq_groups=None,
selected_token_indices=selected_token_indices,
categorized_sample_indices=None,
num_prompts=0,
)
return ModelInputForXPU(input_tokens=input_tokens,
input_positions=input_positions,
attn_metadata=attn_metadata,
sampling_metadata=sampling_metadata,
multi_modal_kwargs=multi_modal_kwargs)
def _prepare_decode(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata]:
assert len(seq_group_metadata_list) > 0
input_tokens: List[int] = []
input_positions: List[int] = []
slot_mapping: List[int] = []
seq_lens: List[int] = []
block_tables: List[List[int]] = []
for seq_group_metadata in seq_group_metadata_list:
assert not seq_group_metadata.is_prompt
assert seq_group_metadata.token_chunk_size == 1
seq_ids = list(seq_group_metadata.seq_data.keys())
for seq_id in seq_ids:
seq_data = seq_group_metadata.seq_data[seq_id]
generation_token = seq_data.get_last_token_id()
input_tokens.append(generation_token)
seq_len = seq_data.get_len()
position = seq_len - 1
input_positions.append(position)
seq_len = seq_len if self.sliding_window is None else min(
seq_len, self.sliding_window)
seq_lens.append(seq_len)
block_table = seq_group_metadata.block_tables[seq_id]
block_number = block_table[position // self.block_size]
block_offset = position % self.block_size
slot = block_number * self.block_size + block_offset
slot_mapping.append(slot)
if self.sliding_window is not None:
sliding_window_blocks = (self.sliding_window //
self.block_size)
block_table = block_table[-sliding_window_blocks:]
block_tables.append(block_table)
max_decode_seq_len = max(seq_lens)
input_tokens = torch.tensor(input_tokens,
dtype=torch.long,
device=self.device)
input_positions = torch.tensor(input_positions,
dtype=torch.long,
device=self.device)
slot_mapping = torch.tensor(slot_mapping,
dtype=torch.long,
device=self.device)
seq_lens_tensor = torch.tensor(seq_lens,
dtype=torch.int,
device=self.device)
block_tables = make_tensor_with_pad(
block_tables,
pad=0,
dtype=torch.int,
device=self.device,
)
attn_metadata = self.attn_backend.make_metadata(
is_prompt=False,
slot_mapping=slot_mapping,
seq_lens=seq_lens,
seqlen_q=None,
max_seqlen=None,
seq_lens_tensor=seq_lens_tensor,
max_decode_seq_len=max_decode_seq_len,
num_prefill_tokens=0,
num_decode_tokens=len(input_tokens),
num_prefills=0,
block_tables=block_tables,
)
return (
input_tokens,
input_positions,
attn_metadata,
)
@torch.inference_mode()
def execute_model(
self,
model_input: ModelInputForXPU,
kv_caches: List[torch.Tensor],
intermediate_tensors: Optional[IntermediateTensors] = None,
num_steps: int = 1,
) -> Optional[List[SamplerOutput]]:
if num_steps > 1:
raise ValueError(
"XPUModelRunner does not support multi-step execution.")
model_executable = self.model
execute_model_kwargs = {
"input_ids":
model_input.input_tokens,
"positions":
model_input.input_positions,
"kv_caches":
kv_caches,
"attn_metadata":
model_input.attn_metadata,
**MultiModalInputs.as_kwargs(model_input.multi_modal_kwargs or {},
device=self.device),
}
hidden_states = model_executable(**execute_model_kwargs)
# Compute the logits.
logits = self.model.compute_logits(hidden_states,
model_input.sampling_metadata)
# Only perform sampling in the driver worker.
if not self.is_driver_worker:
return []
# Sample the next token.
output = self.model.sample(
logits=logits,
sampling_metadata=model_input.sampling_metadata,
)
return [output]
def _prepare_prompt(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, AttentionMetadata, List[int],
BatchedTensorInputs]:
assert len(seq_group_metadata_list) > 0
input_tokens: List[int] = []
input_positions: List[int] = []
slot_mapping: List[int] = []
seq_lens: List[int] = []
multi_modal_inputs_list: List[MultiModalInputs] = []
for seq_group_metadata in seq_group_metadata_list:
assert seq_group_metadata.is_prompt
seq_ids = list(seq_group_metadata.seq_data.keys())
assert len(seq_ids) == 1
seq_id = seq_ids[0]
seq_data = seq_group_metadata.seq_data[seq_id]
prompt_tokens = seq_data.get_token_ids()
computed_len = seq_data.get_num_computed_tokens()
seq_len = len(prompt_tokens)
seq_lens.append(seq_len) # Prompt token num
input_tokens.extend(prompt_tokens) # Token ids
# Token position ids
# NOTE(woosuk): Here we assume that the first token in the prompt
# is always the first token in the sequence.
input_positions.extend(list(range(computed_len, seq_len)))
mm_data = seq_group_metadata.multi_modal_data
if mm_data:
mm_kwargs = self.multi_modal_input_mapper(mm_data)
multi_modal_inputs_list.append(mm_kwargs)
if seq_group_metadata.block_tables is None:
# During memory profiling, the block tables are not initialized
# yet. In this case, we just use a dummy slot mapping.
slot_mapping.extend([_PAD_SLOT_ID] * seq_len)
continue
# Compute the slot mapping.
block_table = seq_group_metadata.block_tables[seq_id]
# Mask the [0, start_idx) tokens of the prompt with _PAD_SLOT_ID,
# where start_idx is max(0, seq_len - sliding_window).
# For example, if the prompt len is 10, sliding window is 8, and
# block size is 4, the first two tokens are masked and the slot
# mapping will be [-1, -1, 2, 3, 4, 5, 6, 7, 0, 1].
start_idx = 0
if self.sliding_window is not None:
start_idx = max(0, seq_len - self.sliding_window)
for i in range(computed_len, seq_len):
if i < start_idx:
slot_mapping.append(_PAD_SLOT_ID)
continue
block_number = block_table[i //
self.block_size] # type: ignore
block_offset = i % self.block_size # type: ignore
slot = block_number * self.block_size + block_offset
slot_mapping.append(slot)
num_prompt_tokens = len(input_tokens)
input_tokens = torch.tensor(input_tokens,
dtype=torch.long,
device=self.device) # type: ignore
input_positions = torch.tensor(input_positions,
dtype=torch.long,
device=self.device) # type: ignore
slot_mapping = torch.tensor(slot_mapping,
dtype=torch.long,
device=self.device) # type: ignore
max_seqlen = max(seq_lens)
tmp = [0]
tmp.extend(seq_lens)
seqlen = torch.tensor(tmp)
seqlen_q = torch.cumsum(seqlen, dim=0).to(device=self.device)
attn_metadata = self.attn_backend.make_metadata(
is_prompt=True,
slot_mapping=slot_mapping,
seq_lens=seq_lens,
seqlen_q=seqlen_q,
max_seqlen=max_seqlen,
seq_lens_tensor=None,
max_decode_seq_len=None,
num_prefills=len(seq_lens),
num_prefill_tokens=num_prompt_tokens,
num_decode_tokens=0,
block_tables=torch.tensor([], device=self.device, dtype=torch.int),
)
multi_modal_kwargs = MultiModalInputs.batch(multi_modal_inputs_list)
return (input_tokens, input_positions, attn_metadata, seq_lens,
multi_modal_kwargs)