vllm/vllm/executor/xpu_executor.py
Kunshang Ji 728c4c8a06
[Hardware][Intel GPU] Add Intel GPU(XPU) inference backend (#3814)
Co-authored-by: Jiang Li <jiang1.li@intel.com>
Co-authored-by: Abhilash Majumder <abhilash.majumder@intel.com>
Co-authored-by: Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
2024-06-17 11:01:25 -07:00

99 lines
3.5 KiB
Python

from typing import List, Optional
import torch
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
ModelConfig, ParallelConfig, SchedulerConfig,
SpeculativeConfig, VisionLanguageConfig)
from vllm.executor.executor_base import ExecutorAsyncBase
from vllm.executor.gpu_executor import GPUExecutor
from vllm.logger import init_logger
from vllm.sequence import ExecuteModelRequest, SamplerOutput
from vllm.utils import make_async
from vllm.worker.worker_base import WorkerWrapperBase
logger = init_logger(__name__)
class XPUExecutor(GPUExecutor):
def __init__(
self,
model_config: ModelConfig,
cache_config: CacheConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
device_config: DeviceConfig,
load_config: LoadConfig,
lora_config: Optional[LoRAConfig],
vision_language_config: Optional[VisionLanguageConfig],
speculative_config: Optional[SpeculativeConfig],
) -> None:
assert device_config.device_type == "xpu"
assert (not speculative_config
), "Speculative decoding not yet supported for XPU backend"
model_config = _verify_and_get_model_config(model_config)
self.model_config = model_config
self.cache_config = cache_config
self.load_config = load_config
self.lora_config = lora_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.device_config = device_config
self.vision_language_config = vision_language_config
self.speculative_config = None
# Instantiate the worker and load the model to GPU.
self._init_executor()
def _create_worker(self,
local_rank: int = 0,
rank: int = 0,
distributed_init_method: Optional[str] = None):
if self.speculative_config is None:
worker_module_name = "vllm.worker.xpu_worker"
worker_class_name = "XPUWorker"
else:
raise NotImplementedError(
"XPU does not support speculative decoding")
wrapper = WorkerWrapperBase(
worker_module_name=worker_module_name,
worker_class_name=worker_class_name,
)
wrapper.init_worker(**self._get_worker_kwargs(local_rank, rank,
distributed_init_method))
return wrapper.worker
def execute_model(
self,
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
output = self.driver_worker.execute_model(execute_model_req)
return output
class XPUExecutorAsync(XPUExecutor, ExecutorAsyncBase):
async def execute_model_async(
self,
execute_model_req: ExecuteModelRequest,
) -> List[SamplerOutput]:
output = await make_async(self.driver_worker.execute_model
)(execute_model_req=execute_model_req)
return output
def _verify_and_get_model_config(config: ModelConfig) -> ModelConfig:
if config.dtype == torch.bfloat16:
logger.warning(
"bfloat16 is not fully supported on XPU, casting to float16.")
config.dtype = torch.float16
if not config.enforce_eager:
logger.warning(
"CUDA graph is not supported on XPU, fallback to the eager "
"mode.")
config.enforce_eager = True
return config