Go to file
youkaichao ccd3c04571
[ci][build] fix commit id (#6420)
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2024-07-14 22:16:21 +08:00
.buildkite [ci][build] fix commit id (#6420) 2024-07-14 22:16:21 +08:00
.github [ci] Fix wording for GH bot (#6398) 2024-07-12 16:34:37 -07:00
benchmarks [CI/Build] Add nightly benchmarking for tgi, tensorrt-llm and lmdeploy (#5362) 2024-07-11 13:28:38 -07:00
cmake Support CPU inference with VSX PowerPC ISA (#5652) 2024-06-26 21:53:04 +00:00
csrc [Kernel] Turn off CUTLASS scaled_mm for Ada Lovelace (#6384) 2024-07-14 13:37:19 +00:00
docs Remove unnecessary trailing period in spec_decode.rst (#6405) 2024-07-14 07:58:09 +00:00
examples [Model] Initialize Fuyu-8B support (#3924) 2024-07-14 05:27:14 +00:00
rocm_patch [AMD][Hardware][Misc][Bugfix] xformer cleanup and light navi logic and CI fixes and refactoring (#4129) 2024-04-21 21:57:24 -07:00
tests [Model] Initialize Fuyu-8B support (#3924) 2024-07-14 05:27:14 +00:00
vllm [Model] Initialize Fuyu-8B support (#3924) 2024-07-14 05:27:14 +00:00
.clang-format [CI/Build] Enforce style for C++ and CUDA code with clang-format (#4722) 2024-05-22 07:18:41 +00:00
.dockerignore Build docker image with shared objects from "build" step (#2237) 2024-01-04 09:35:18 -08:00
.gitignore [Misc] Add generated git commit hash as vllm.__commit__ (#6386) 2024-07-12 22:52:15 +00:00
.readthedocs.yaml Add .readthedocs.yaml (#136) 2023-06-02 22:27:44 -07:00
.yapfignore [issue templates] add some issue templates (#3412) 2024-03-14 13:16:00 -07:00
CMakeLists.txt [MISC] Upgrade dependency to PyTorch 2.3.1 (#5327) 2024-07-12 12:04:26 -07:00
collect_env.py [Misc] update collect env (#5261) 2024-06-04 17:29:09 -05:00
CONTRIBUTING.md [Misc] Define common requirements (#3841) 2024-04-05 00:39:17 -07:00
Dockerfile [ci][build] fix commit id (#6420) 2024-07-14 22:16:21 +08:00
Dockerfile.cpu [Hardware][Intel CPU] Adding intel openmp tunings in Docker file (#6008) 2024-07-04 15:22:12 -07:00
Dockerfile.neuron [Misc] Remove VLLM_BUILD_WITH_NEURON env variable (#5389) 2024-06-11 00:37:56 -07:00
Dockerfile.openvino [Hardware][Intel] OpenVINO vLLM backend (#5379) 2024-06-28 13:50:16 +00:00
Dockerfile.ppc64le Support CPU inference with VSX PowerPC ISA (#5652) 2024-06-26 21:53:04 +00:00
Dockerfile.rocm [ROCm][AMD] unify CUDA_VISIBLE_DEVICES usage in cuda/rocm (#6352) 2024-07-11 21:30:46 -07:00
Dockerfile.tpu [Bugfix][TPU] Fix outlines installation in TPU Dockerfile (#6256) 2024-07-09 02:56:06 -07:00
Dockerfile.xpu [Hardware][Intel GPU] Add Intel GPU(XPU) inference backend (#3814) 2024-06-17 11:01:25 -07:00
format.sh [CI/Build] Enable mypy typing for remaining folders (#6268) 2024-07-10 22:15:55 +08:00
LICENSE Add Apache-2.0 license (#102) 2023-05-14 18:05:19 -07:00
MANIFEST.in [BugFix] Include target-device specific requirements.txt in sdist (#4559) 2024-05-02 10:52:51 -07:00
pyproject.toml [MISC] Upgrade dependency to PyTorch 2.3.1 (#5327) 2024-07-12 12:04:26 -07:00
README.md [Docs] Clean up latest news (#6401) 2024-07-12 19:36:53 -07:00
requirements-build.txt [MISC] Upgrade dependency to PyTorch 2.3.1 (#5327) 2024-07-12 12:04:26 -07:00
requirements-common.txt Updating LM Format Enforcer version to v10.3 (#6411) 2024-07-13 10:09:12 +00:00
requirements-cpu.txt Support CPU inference with VSX PowerPC ISA (#5652) 2024-06-26 21:53:04 +00:00
requirements-cuda.txt [MISC] Upgrade dependency to PyTorch 2.3.1 (#5327) 2024-07-12 12:04:26 -07:00
requirements-dev.txt Seperate dev requirements into lint and test (#5474) 2024-06-13 11:22:41 -07:00
requirements-lint.txt Seperate dev requirements into lint and test (#5474) 2024-06-13 11:22:41 -07:00
requirements-mamba.txt [Model] Jamba support (#4115) 2024-07-02 23:11:29 +00:00
requirements-neuron.txt [Misc] Define common requirements (#3841) 2024-04-05 00:39:17 -07:00
requirements-openvino.txt [Bugfix] Fix usage stats logging exception warning with OpenVINO (#6349) 2024-07-12 10:47:00 +08:00
requirements-rocm.txt [Build/CI] Enabling AMD Entrypoints Test (#4834) 2024-05-20 11:29:28 -07:00
requirements-test.txt [ CI/Build ] Added E2E Test For Compressed Tensors (#5839) 2024-06-29 21:12:58 +08:00
requirements-tpu.txt [Hardware] Initial TPU integration (#5292) 2024-06-12 11:53:03 -07:00
requirements-xpu.txt [Hardware][Intel GPU] Add Intel GPU(XPU) inference backend (#3814) 2024-06-17 11:01:25 -07:00
setup.py [ci][build] fix commit id (#6420) 2024-07-14 22:16:21 +08:00

vLLM

Easy, fast, and cheap LLM serving for everyone

| Documentation | Blog | Paper | Discord |


Latest News 🔥


About

vLLM is a fast and easy-to-use library for LLM inference and serving.

vLLM is fast with:

  • State-of-the-art serving throughput
  • Efficient management of attention key and value memory with PagedAttention
  • Continuous batching of incoming requests
  • Fast model execution with CUDA/HIP graph
  • Quantization: GPTQ, AWQ, SqueezeLLM, FP8 KV Cache
  • Optimized CUDA kernels

Performance benchmark: We include a performance benchmark that compares the performance of vllm against other LLM serving engines (TensorRT-LLM, text-generation-inference and lmdeploy).

vLLM is flexible and easy to use with:

  • Seamless integration with popular Hugging Face models
  • High-throughput serving with various decoding algorithms, including parallel sampling, beam search, and more
  • Tensor parallelism and pipeline parallelism support for distributed inference
  • Streaming outputs
  • OpenAI-compatible API server
  • Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs
  • (Experimental) Prefix caching support
  • (Experimental) Multi-lora support

vLLM seamlessly supports most popular open-source models on HuggingFace, including:

  • Transformer-like LLMs (e.g., Llama)
  • Mixture-of-Expert LLMs (e.g., Mixtral)
  • Multi-modal LLMs (e.g., LLaVA)

Find the full list of supported models here.

Getting Started

Install vLLM with pip or from source:

pip install vllm

Visit our documentation to learn more.

Contributing

We welcome and value any contributions and collaborations. Please check out CONTRIBUTING.md for how to get involved.

Sponsors

vLLM is a community project. Our compute resources for development and testing are supported by the following organizations. Thank you for your support!

  • a16z
  • AMD
  • Anyscale
  • AWS
  • Crusoe Cloud
  • Databricks
  • DeepInfra
  • Dropbox
  • Lambda Lab
  • NVIDIA
  • Replicate
  • Roblox
  • RunPod
  • Sequoia Capital
  • Trainy
  • UC Berkeley
  • UC San Diego
  • ZhenFund

We also have an official fundraising venue through OpenCollective. We plan to use the fund to support the development, maintenance, and adoption of vLLM.

Citation

If you use vLLM for your research, please cite our paper:

@inproceedings{kwon2023efficient,
  title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
  author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
  booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
  year={2023}
}