Co-authored-by: Roger Wang <ywang@roblox.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
237 lines
7.5 KiB
Python
237 lines
7.5 KiB
Python
from typing import List, Optional, Tuple, Type, overload
|
|
|
|
import pytest
|
|
import transformers
|
|
from transformers import AutoConfig, AutoModelForVision2Seq, AutoTokenizer
|
|
|
|
from vllm.multimodal.utils import (rescale_video_size, resize_video,
|
|
sample_frames_from_video)
|
|
from vllm.sequence import SampleLogprobs
|
|
|
|
from ..conftest import VIDEO_ASSETS, HfRunner, VllmRunner, _VideoAssets
|
|
from .utils import check_logprobs_close
|
|
|
|
pytestmark = pytest.mark.vlm
|
|
|
|
_PREFACE = (
|
|
"A chat between a curious human and an artificial intelligence assistant. "
|
|
"The assistant gives helpful, detailed, and polite answers to the human's "
|
|
"questions.")
|
|
|
|
HF_VIDEO_PROMPTS = VIDEO_ASSETS.prompts({
|
|
"sample_demo_1":
|
|
f"{_PREFACE}USER: <video>\nWhy is this video funny? ASSISTANT:"
|
|
})
|
|
|
|
models = ["llava-hf/LLaVA-NeXT-Video-7B-hf"]
|
|
|
|
|
|
def vllm_to_hf_output(vllm_output: Tuple[List[int], str,
|
|
Optional[SampleLogprobs]],
|
|
model: str):
|
|
"""Sanitize vllm output to be comparable with hf output."""
|
|
output_ids, output_str, out_logprobs = vllm_output
|
|
|
|
config = AutoConfig.from_pretrained(model)
|
|
video_token_id = config.video_token_index
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model)
|
|
eos_token_id = tokenizer.eos_token_id
|
|
|
|
hf_output_ids = [
|
|
token_id for idx, token_id in enumerate(output_ids)
|
|
if token_id != video_token_id or output_ids[idx - 1] != video_token_id
|
|
]
|
|
|
|
assert output_str[0] == " "
|
|
hf_output_str = output_str[1:]
|
|
if hf_output_ids[-1] == eos_token_id:
|
|
hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)
|
|
|
|
return hf_output_ids, hf_output_str, out_logprobs
|
|
|
|
|
|
@overload
|
|
def run_test(
|
|
hf_runner: Type[HfRunner],
|
|
vllm_runner: Type[VllmRunner],
|
|
video_assets: _VideoAssets,
|
|
model: str,
|
|
*,
|
|
size_factors: List[float],
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
num_frames: int,
|
|
tensor_parallel_size: int,
|
|
distributed_executor_backend: Optional[str] = None,
|
|
):
|
|
...
|
|
|
|
|
|
@overload
|
|
def run_test(
|
|
hf_runner: Type[HfRunner],
|
|
vllm_runner: Type[VllmRunner],
|
|
video_assets: _VideoAssets,
|
|
model: str,
|
|
*,
|
|
sizes: List[Tuple[int, int]],
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
num_frames: int,
|
|
tensor_parallel_size: int,
|
|
distributed_executor_backend: Optional[str] = None,
|
|
):
|
|
...
|
|
|
|
|
|
def run_test(
|
|
hf_runner: Type[HfRunner],
|
|
vllm_runner: Type[VllmRunner],
|
|
video_assets: _VideoAssets,
|
|
model: str,
|
|
*,
|
|
size_factors: Optional[List[float]] = None,
|
|
sizes: Optional[List[Tuple[int, int]]] = None,
|
|
dtype: str,
|
|
max_tokens: int,
|
|
num_logprobs: int,
|
|
num_frames: int,
|
|
tensor_parallel_size: int,
|
|
distributed_executor_backend: Optional[str] = None,
|
|
):
|
|
videos = [
|
|
sample_frames_from_video(asset.np_ndarrays, num_frames)
|
|
for asset in video_assets
|
|
]
|
|
|
|
for video in videos:
|
|
print(video.shape)
|
|
|
|
if size_factors is not None:
|
|
inputs_per_video = [(
|
|
[prompt for _ in size_factors],
|
|
[rescale_video_size(video, factor) for factor in size_factors],
|
|
) for video, prompt in zip(videos, HF_VIDEO_PROMPTS)]
|
|
elif sizes is not None:
|
|
inputs_per_video = [(
|
|
[prompt for _ in sizes],
|
|
[resize_video(video, size) for size in sizes],
|
|
) for video, prompt in zip(videos, HF_VIDEO_PROMPTS)]
|
|
else:
|
|
raise ValueError("You must provide either `size_factors` or `sizes`")
|
|
|
|
# max_model_len should be greater than image_feature_size
|
|
with vllm_runner(model,
|
|
dtype=dtype,
|
|
max_model_len=4096,
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
distributed_executor_backend=distributed_executor_backend,
|
|
enforce_eager=True) as vllm_model:
|
|
vllm_outputs_per_video = [
|
|
vllm_model.generate_greedy_logprobs(prompts,
|
|
max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
videos=videos)
|
|
for prompts, videos in inputs_per_video
|
|
]
|
|
|
|
with hf_runner(model, dtype=dtype,
|
|
auto_cls=AutoModelForVision2Seq) as hf_model:
|
|
hf_outputs_per_video = [
|
|
hf_model.generate_greedy_logprobs_limit(prompts,
|
|
max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
videos=videos)
|
|
for prompts, videos in inputs_per_video
|
|
]
|
|
|
|
for hf_outputs, vllm_outputs in zip(hf_outputs_per_video,
|
|
vllm_outputs_per_video):
|
|
# TODO: Check whether using original CLIPVisionModel can improve
|
|
# consistency against HF
|
|
check_logprobs_close(
|
|
outputs_0_lst=hf_outputs,
|
|
outputs_1_lst=[
|
|
vllm_to_hf_output(vllm_output, model)
|
|
for vllm_output in vllm_outputs
|
|
],
|
|
name_0="hf",
|
|
name_1="vllm",
|
|
)
|
|
|
|
|
|
@pytest.mark.skipif(transformers.__version__ < "4.45",
|
|
reason="Waiting for next transformers release")
|
|
@pytest.mark.parametrize("model", models)
|
|
@pytest.mark.parametrize(
|
|
"size_factors",
|
|
[
|
|
# No video
|
|
[],
|
|
# Single-scale
|
|
[1.0],
|
|
# Single-scale, batched
|
|
[1.0, 1.0, 1.0],
|
|
# Multi-scale
|
|
[0.25, 0.5, 1.0],
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
@pytest.mark.parametrize("num_frames", [16])
|
|
def test_models(hf_runner, vllm_runner, video_assets, model, size_factors,
|
|
dtype, max_tokens, num_logprobs, num_frames) -> None:
|
|
"""Inference result should be the same between hf and vllm.
|
|
|
|
All the image fixtures for the test is under tests/videos.
|
|
For huggingface runner, we provide the np.ndarray as input.
|
|
For vllm runner, we provide MultiModalDataDict objects
|
|
and corresponding MultiModalConfig as input.
|
|
Note, the text input is also adjusted to abide by vllm contract.
|
|
The text output is sanitized to be able to compare with hf.
|
|
"""
|
|
run_test(
|
|
hf_runner,
|
|
vllm_runner,
|
|
video_assets,
|
|
model,
|
|
size_factors=size_factors,
|
|
dtype=dtype,
|
|
max_tokens=max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
num_frames=num_frames,
|
|
tensor_parallel_size=1,
|
|
)
|
|
|
|
|
|
@pytest.mark.skipif(transformers.__version__ < "4.45",
|
|
reason="Waiting for next transformers release")
|
|
@pytest.mark.parametrize("model", models)
|
|
@pytest.mark.parametrize(
|
|
"sizes",
|
|
[[(1669, 2560), (2560, 1669), (183, 488), (488, 183)]],
|
|
)
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
@pytest.mark.parametrize("num_frames", [16])
|
|
def test_models_fixed_sizes(hf_runner, vllm_runner, video_assets, model, sizes,
|
|
dtype, max_tokens, num_logprobs,
|
|
num_frames) -> None:
|
|
run_test(
|
|
hf_runner,
|
|
vllm_runner,
|
|
video_assets,
|
|
model,
|
|
sizes=sizes,
|
|
dtype=dtype,
|
|
max_tokens=max_tokens,
|
|
num_logprobs=num_logprobs,
|
|
num_frames=num_frames,
|
|
tensor_parallel_size=1,
|
|
)
|