vllm/vllm/model_executor/models/opt.py
Yongzao d27cfbf791
[torch.compile] Adding torch compile annotations to some models (#9641)
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-10-24 09:31:42 -07:00

419 lines
16 KiB
Python

# coding=utf-8
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/opt/modeling_opt.py
# Copyright 2023 The vLLM team.
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights
# reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only OPT model compatible with HuggingFace weights."""
from typing import Iterable, List, Optional, Tuple, Union
import torch
from torch import nn
from transformers import OPTConfig
from vllm.attention import Attention, AttentionMetadata
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .interfaces import SupportsPP
from .utils import (is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers)
class OPTLearnedPositionalEmbedding(nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int):
# OPT is set up so that if padding_idx is specified then offset the
# embedding ids by 2 and adjust num_embeddings appropriately. Other
# models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, positions: torch.Tensor):
return super().forward(positions + self.offset)
class OPTAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.embed_dim = embed_dim
tensor_model_parallel_world_size = (
get_tensor_model_parallel_world_size())
total_num_heads = num_heads
assert num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = embed_dim // total_num_heads
self.scaling = self.head_dim**-0.5
self.qkv_proj = QKVParallelLinear(
embed_dim,
self.head_dim,
total_num_heads,
bias=bias,
quant_config=quant_config,
)
self.out_proj = RowParallelLinear(
embed_dim,
embed_dim,
bias=bias,
quant_config=quant_config,
)
self.attn = Attention(self.num_heads,
self.head_dim,
scale=self.scaling,
cache_config=cache_config,
quant_config=quant_config)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.out_proj(attn_output)
return output
class OPTDecoderLayer(nn.Module):
def __init__(
self,
config: OPTConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.self_attn = OPTAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
bias=config.enable_bias,
cache_config=cache_config,
quant_config=quant_config,
)
self.do_layer_norm_before = config.do_layer_norm_before
self.self_attn_layer_norm = nn.LayerNorm(
self.embed_dim,
elementwise_affine=config.layer_norm_elementwise_affine)
self.fc1 = ColumnParallelLinear(
self.embed_dim,
config.ffn_dim,
bias=config.enable_bias,
quant_config=quant_config,
)
self.activation_fn = get_act_fn(config.activation_function,
quant_config, config.ffn_dim)
self.fc2 = RowParallelLinear(
config.ffn_dim,
self.embed_dim,
bias=config.enable_bias,
quant_config=quant_config,
)
self.final_layer_norm = nn.LayerNorm(
self.embed_dim,
elementwise_affine=config.layer_norm_elementwise_affine)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
# Self Attention
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states = self.self_attn(hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states, _ = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states, _ = self.fc2(hidden_states)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states
class OPTDecoder(nn.Module):
def __init__(
self,
config: OPTConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.word_embed_proj_dim,
)
# Positional embeddings are replicated (not sharded).
self.embed_positions = OPTLearnedPositionalEmbedding(
config.max_position_embeddings, config.hidden_size)
# Project out & in will be replicated if they exist.
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = ReplicatedLinear(config.hidden_size,
config.word_embed_proj_dim,
bias=False,
quant_config=quant_config)
else:
self.project_out = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_in = ReplicatedLinear(config.word_embed_proj_dim,
config.hidden_size,
bias=False,
quant_config=quant_config)
else:
self.project_in = None
# Note that the only purpose of `config._remove_final_layer_norm` is to
# keep backward compatibility with checkpoints that have been fine-tuned
# before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(
config.hidden_size,
elementwise_affine=config.layer_norm_elementwise_affine)
else:
self.final_layer_norm = None
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: OPTDecoderLayer(config, cache_config, quant_config),
prefix=f"{prefix}.layers")
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings(input_ids)
pos_embeds = self.embed_positions(positions)
if self.project_in is not None:
inputs_embeds, _ = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
hidden_states = layer(hidden_states,
kv_caches[i - self.start_layer],
attn_metadata)
if not get_pp_group().is_last_rank:
return IntermediateTensors({"hidden_states": hidden_states})
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states, _ = self.project_out(hidden_states)
return hidden_states
@support_torch_compile
class OPTModel(nn.Module):
def __init__(
self,
config: OPTConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.decoder = OPTDecoder(config, cache_config, quant_config)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(["hidden_states"],
config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.decoder.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
return self.decoder(input_ids,
positions,
kv_caches,
attn_metadata,
intermediate_tensors,
inputs_embeds=inputs_embeds)
class OPTForCausalLM(nn.Module, SupportsPP):
# BitandBytes specific attributes
bitsandbytes_stacked_params_mapping = {
# shard_name, weight_name, index
"q_proj": ("qkv_proj", 0),
"k_proj": ("qkv_proj", 1),
"v_proj": ("qkv_proj", 2),
}
default_bitsandbytes_target_modules = [
".q_proj.", ".k_proj.", ".v_proj.", ".out_proj.", ".fc1.", ".fc2."
]
# in TP, these weights are partitioned along the column dimension (dim=-1)
column_parallel_weights_modules = [".out_proj.", ".fc2."]
def __init__(
self,
config: OPTConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
):
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = OPTModel(config, cache_config, quant_config)
if self.config.tie_word_embeddings:
self.lm_head = self.model.decoder.embed_tokens
else:
self.lm_head = ParallelLMHead(config.vocab_size,
config.word_embed_proj_dim)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "lm_head.weight" in name and self.config.tie_word_embeddings:
continue
if name.startswith("decoder."):
name = "model." + name
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)