151 lines
5.0 KiB
Python
151 lines
5.0 KiB
Python
from abc import ABC, abstractmethod
|
|
from typing import List, Optional, Set, Tuple
|
|
|
|
from vllm.config import (CacheConfig, DeviceConfig, LoadConfig, LoRAConfig,
|
|
ModelConfig, ObservabilityConfig, ParallelConfig,
|
|
PromptAdapterConfig, SchedulerConfig,
|
|
SpeculativeConfig)
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.model_executor.layers.sampler import SamplerOutput
|
|
from vllm.prompt_adapter.request import PromptAdapterRequest
|
|
from vllm.sequence import ExecuteModelRequest
|
|
|
|
|
|
class ExecutorBase(ABC):
|
|
"""Base class for all executors.
|
|
|
|
An executor is responsible for executing the model on a specific device
|
|
type (e.g., CPU, GPU, Neuron, etc.). Or it can be a distributed executor
|
|
that can execute the model on multiple devices.
|
|
"""
|
|
|
|
uses_ray: bool # whether the executor uses Ray for orchestration.
|
|
|
|
def __init__(
|
|
self,
|
|
model_config: ModelConfig,
|
|
cache_config: CacheConfig,
|
|
parallel_config: ParallelConfig,
|
|
scheduler_config: SchedulerConfig,
|
|
device_config: DeviceConfig,
|
|
load_config: LoadConfig,
|
|
lora_config: Optional[LoRAConfig],
|
|
speculative_config: Optional[SpeculativeConfig],
|
|
prompt_adapter_config: Optional[PromptAdapterConfig],
|
|
observability_config: Optional[ObservabilityConfig],
|
|
) -> None:
|
|
self.model_config = model_config
|
|
self.cache_config = cache_config
|
|
self.lora_config = lora_config
|
|
self.load_config = load_config
|
|
self.parallel_config = parallel_config
|
|
self.scheduler_config = scheduler_config
|
|
self.device_config = device_config
|
|
self.speculative_config = speculative_config
|
|
self.prompt_adapter_config = prompt_adapter_config
|
|
self.observability_config = observability_config
|
|
self._init_executor()
|
|
|
|
@abstractmethod
|
|
def _init_executor(self) -> None:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def determine_num_available_blocks(self) -> Tuple[int, int]:
|
|
"""Determine the number of available blocks for the GPU KV cache and
|
|
swappable CPU KV cache.
|
|
|
|
Normally, this should simply delegate to the underlying Worker. Some
|
|
ExecutorBase may require modification of the result, e.g. to ensure the
|
|
selected cache sizes are compatible with all workers.
|
|
|
|
Returns a Tuple[num_gpu_blocks, num_cpu_blocks], where num_gpu_blocks
|
|
are blocks that are "active" on the device and can be appended to.
|
|
num_cpu_blocks refers to "swapped" blocks in CPU memory and cannot be
|
|
appended to.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def initialize_cache(self, num_gpu_blocks: int,
|
|
num_cpu_blocks: int) -> None:
|
|
"""Initialize the KV cache with the given size in blocks.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def execute_model(
|
|
self, execute_model_req: ExecuteModelRequest
|
|
) -> Optional[List[SamplerOutput]]:
|
|
"""Executes at least one model step on the given sequences."""
|
|
raise NotImplementedError
|
|
|
|
def stop_remote_worker_execution_loop(self) -> None:
|
|
"""Releases parallel workers from model loop."""
|
|
return
|
|
|
|
@abstractmethod
|
|
def add_lora(self, lora_request: LoRARequest) -> bool:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def remove_lora(self, lora_id: int) -> bool:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def pin_lora(self, lora_id: int) -> bool:
|
|
raise NotImplementedError # type: ignore
|
|
|
|
@abstractmethod
|
|
def list_loras(self) -> Set[int]:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def add_prompt_adapter(
|
|
self, prompt_adapter_request: PromptAdapterRequest) -> bool:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def remove_prompt_adapter(self, prompt_adapter_id: int) -> bool:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def pin_prompt_adapter(self, prompt_adapter_id: int) -> bool:
|
|
raise NotImplementedError # type: ignore
|
|
|
|
@abstractmethod
|
|
def list_prompt_adapters(self) -> Set[int]:
|
|
raise NotImplementedError
|
|
|
|
@abstractmethod
|
|
def check_health(self) -> None:
|
|
"""Checks if the executor is healthy. If not, it should raise an
|
|
exception."""
|
|
raise NotImplementedError
|
|
|
|
def shutdown(self) -> None:
|
|
"""Shutdown the executor."""
|
|
return
|
|
|
|
def __del__(self):
|
|
self.shutdown()
|
|
|
|
|
|
class ExecutorAsyncBase(ExecutorBase):
|
|
|
|
@abstractmethod
|
|
async def execute_model_async(
|
|
self,
|
|
execute_model_req: ExecuteModelRequest) -> List[SamplerOutput]:
|
|
"""Executes one model step on the given sequences."""
|
|
raise NotImplementedError
|
|
|
|
async def stop_remote_worker_execution_loop_async(self) -> None:
|
|
"""Releases parallel workers from model loop."""
|
|
return
|
|
|
|
async def check_health_async(self) -> None:
|
|
"""Checks if the executor is healthy. If not, it should raise an
|
|
exception."""
|
|
self.check_health()
|