vllm/vllm/model_executor/models/persimmon.py
Isotr0py 540c0368b1
[Model] Initialize Fuyu-8B support (#3924)
Co-authored-by: Roger Wang <ywang@roblox.com>
2024-07-14 05:27:14 +00:00

334 lines
13 KiB
Python

# coding=utf-8
# adapted from https://github.com/huggingface/transformers/blob/v4.39.3/src/transformers/models/persimmon/modeling_persimmon.py
# Copyright 2023 The vLLM team.
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only persimmon model compatible with HuggingFace weights."""
from typing import Iterable, List, Optional, Tuple
import torch
from torch import nn
from transformers import PersimmonConfig
from transformers.activations import ReLUSquaredActivation
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors, SamplerOutput
class PersimmonMLP(nn.Module):
def __init__(self,
config: PersimmonConfig,
quant_config: Optional[QuantizationConfig] = None):
super().__init__()
self.dense_h_to_4h = ColumnParallelLinear(config.hidden_size,
config.intermediate_size,
quant_config=quant_config)
self.dense_4h_to_h = RowParallelLinear(config.intermediate_size,
config.hidden_size,
quant_config=quant_config)
self.act = ReLUSquaredActivation()
def forward(self, hidden_states) -> torch.Tensor:
hidden_states, _ = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states, _ = self.dense_4h_to_h(hidden_states)
return hidden_states
class PersimmonAttention(nn.Module):
def __init__(self,
config: PersimmonConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None):
super().__init__()
self.config = config
tensor_parallel_world_size = get_tensor_model_parallel_world_size()
self.hidden_size = config.hidden_size
self.total_num_heads = config.num_attention_heads
self.num_heads = self.total_num_heads // tensor_parallel_world_size
self.head_dim = self.hidden_size // self.total_num_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.partial_rotary_factor = config.partial_rotary_factor
self.is_causal = True
assert (self.head_dim * self.total_num_heads) == self.hidden_size
assert self.total_num_heads % tensor_parallel_world_size == 0
self.query_key_value = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
bias=True,
quant_config=quant_config,
)
self.dense = RowParallelLinear(
self.num_heads * self.head_dim,
self.hidden_size,
bias=True,
quant_config=quant_config,
)
self.is_qk_layernorm = config.qk_layernorm
if self.is_qk_layernorm:
self.q_layernorm = nn.LayerNorm(self.head_dim)
self.k_layernorm = nn.LayerNorm(self.head_dim)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=int(self.partial_rotary_factor * self.head_dim),
max_position=self.max_position_embeddings,
base=self.rope_theta,
)
self.scaling = self.head_dim**-0.5
self.attn = Attention(self.num_heads,
self.head_dim,
scale=self.scaling,
cache_config=cache_config,
quant_config=quant_config)
def _split_heads(self, x: torch.Tensor) -> torch.Tensor:
# [seq_length, hidden_size] -> [seq_length, num_heads, head_dim]
seq_length = x.shape[0]
return x.view(seq_length, self.num_heads, self.head_dim)
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
# [seq_length, num_heads, head_dim] -> [seq_length, hidden_size]
seq_length = x.shape[0]
return x.view(seq_length, self.num_heads * self.head_dim)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
# [seq_length, 3 x hidden_size]
qkv, _ = self.query_key_value(hidden_states)
q, k, v = qkv.chunk(chunks=3, dim=-1)
if self.is_qk_layernorm:
# [seq_length, num_heads, head_dim]
q = self._split_heads(q)
k = self._split_heads(k)
q = self.q_layernorm(q)
k = self.k_layernorm(k)
q = self._merge_heads(q)
k = self._merge_heads(k)
q, k = self.rotary_emb(position_ids, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.dense(attn_output)
return output
class PersimmonDecoderLayer(nn.Module):
def __init__(self,
config: PersimmonConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = PersimmonAttention(config=config,
cache_config=cache_config,
quant_config=quant_config)
self.mlp = PersimmonMLP(config, quant_config=quant_config)
self.input_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
def forward(
self,
position_ids: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states = self.self_attn(
position_ids=position_ids,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = hidden_states + residual
outputs = hidden_states
return outputs
class PersimmonModel(nn.Module):
def __init__(self,
config: PersimmonConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None):
super().__init__()
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.layers = nn.ModuleList([
PersimmonDecoderLayer(config,
cache_config=cache_config,
quant_config=quant_config)
for _ in range(config.num_hidden_layers)
])
self.final_layernorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embed_tokens(input_ids)
for i in range(len(self.layers)):
hidden_states = self.layers[i](
positions,
hidden_states,
kv_caches[i],
attn_metadata,
)
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
class PersimmonForCausalLM(nn.Module):
def __init__(self,
config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.model = PersimmonModel(config,
cache_config=cache_config,
quant_config=quant_config)
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
bias=False)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
):
hidden_states = self.model(
input_ids=input_ids,
positions=positions,
kv_caches=kv_caches,
attn_metadata=attn_metadata,
inputs_embeds=inputs_embeds,
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters(remove_duplicate=False))
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
param = params_dict[name]
if "query_key_value" in name:
# copy from vllm/model_executor/models/bloom.py
# NOTE: Persimmon's fused QKV's output_dim has the shape of
# (num_heads * 3 * head_size), while the
# required shape is (3 * num_heads * head_size).
# Thus, we need weight conversion.
output_dim = getattr(param, "output_dim", None)
num_heads = self.config.num_attention_heads
if output_dim is not None:
loaded_weight_shape = loaded_weight.shape
loaded_weight = loaded_weight.view(
loaded_weight_shape[:output_dim] + (num_heads, 3, -1) +
loaded_weight_shape[output_dim + 1:])
loaded_weight = loaded_weight.transpose(
output_dim, output_dim + 1)
loaded_weight = loaded_weight.reshape(loaded_weight_shape)
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)