vllm/vllm/model_executor/models/stablelm.py
Qubitium-ModelCloud ee93f4f92a
[CORE] Quantized lm-head Framework (#4442)
Co-authored-by: Robert Shaw <rshaw@neuralmagic.com>
Co-authored-by: ZX <zx@lbx.dev>
2024-07-02 22:25:17 +00:00

312 lines
13 KiB
Python

# coding=utf-8
# Copyright 2023 Stability AI, EleutherAI, and The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This code is based off the following work:
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/modeling_stablelm_epoch.py
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/config.json
"""Inference-only StabeLM (https://github.com/Stability-AI/StableLM)
model compatible with HuggingFace weights."""
from typing import Iterable, List, Optional, Tuple
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors, SamplerOutput
class StablelmMLP(nn.Module):
def __init__(self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_up_proj = MergedColumnParallelLinear(
config.hidden_size, [config.intermediate_size] * 2,
bias=False,
quant_config=quant_config)
self.down_proj = RowParallelLinear(config.intermediate_size,
config.hidden_size,
bias=False)
self.act_fn = SiluAndMul()
def forward(self, x: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class StablelmAttention(nn.Module):
def __init__(self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = config.num_attention_heads
self.num_heads = self.total_num_heads // tp_size
self.total_num_key_value_heads = config.num_key_value_heads
if self.total_num_key_value_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_key_value_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_key_value_heads == 0
self.num_key_value_heads = max(
1, self.total_num_key_value_heads // tp_size)
self.head_dim = self.hidden_size // self.total_num_heads
self.max_position_embeddings = config.max_position_embeddings
rope_pct = getattr(config, "rope_pct",
getattr(config, "partial_rotary_factor", 1))
self.rotary_ndims = int(self.head_dim * rope_pct)
self.scaling = self.head_dim**-0.5
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_key_value_heads * self.head_dim
self.qkv_bias = getattr(config, "use_qkv_bias", False)
if (self.head_dim * self.num_heads * tp_size) != self.hidden_size:
raise ValueError(f"hidden_size must be divisible by num_heads "
f"(got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads}).")
self.qkv_proj = QKVParallelLinear(self.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_key_value_heads,
self.qkv_bias,
quant_config=quant_config)
self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.rotary_ndims,
max_position=self.config.max_position_embeddings,
base=self.config.rope_theta,
)
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_key_value_heads,
cache_config=cache_config,
quant_config=quant_config)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
output, _ = self.o_proj(attn_output)
return output
class StablelmDecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.self_attn = StablelmAttention(config, cache_config, quant_config)
self.mlp = StablelmMLP(config, quant_config)
norm_eps = getattr(config, "norm_eps",
getattr(config, "layer_norm_eps", 1e-05))
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=norm_eps)
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
eps=norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states, residual
class StableLMEpochModel(nn.Module):
def __init__(self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
super().__init__()
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
StablelmDecoderLayer(config, cache_config, quant_config)
for _ in range(config.num_hidden_layers)
])
norm_eps = getattr(config, "norm_eps",
getattr(config, "layer_norm_eps", 1e-05))
self.norm = nn.LayerNorm(config.hidden_size, eps=norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
kv_caches[i],
attn_metadata,
)
hidden_states = self.norm(hidden_states)
return hidden_states
class StablelmForCausalLM(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = StableLMEpochModel(config, cache_config, quant_config)
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def sample(
self,
logits: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if ("rotary_emb.cos_cached" in name
or "rotary_emb.sin_cached" in name):
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)